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Abstract—In this correspondence, we introduce a technique to deter-
mine an optimal focusing frequency for the direction-of-arrival estima-
tion of wideband signals using the coherent signal-subspace processing
method. We minimize the subspace fitting error to select an optimal
focusing frequency. Direct optimization of this criterion can be computa-
tionally complex—the complexity increases with the nummber of frequency
samples. An alternative technique is introduced that performs nearly
as well as the optimal method. This suboptimal technique is based on
minimizing a tight bound to the error. The computational complexity
of the suboptimal method is independent of the number of frequency
samples. The simulation results show that the proposed method reduces
both the bias of estimation and the resolution threshold signal-to-noise
ratio (SNR).

I. . INTRODUCTION

Array processing techniques can be used to locate wideband
signals. A wideband signal has a bandwidth comparable to the center
frequency. Several methods for the processing of wideband signals
using an array of sensors have been proposed in the literature [11],
[11, [6]. The first step in some of these techniques is to obtain samples
of the signal in the frequency domain. These samples are found by
applying a discrete Fourier transformation to the time samples of the
signal or by using a filter bank. The samples of the spectram can be
uniformly or nonuniformly spaced.

Many array processing techniques use thé concept of the signal
subspace. The signal subspace is the span of the location vectors of
the array for fixed directions-of-arrival (DOA’s). Since each location
vector is a function of frequency, the signal subspace depends on
the frequency of the observation. For wideband signals, the signal
subspaces at different frequencies do not overlap, and as a result,
the observation vectors at the frequency bins camnot be directly
added to each other. Wang and Kaveh [11] propose focusing of
the observation vectors. Focusing involves transforming the signal
subspacés at different frequency bins into a predefined subspace
(called the focusing subspace). They choose an arbitrary frequency,
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say, the center frequency of the spectrum of the signals, and transform
the subspace at each frequency bin into the subspace created by the
span of the location vectors at the focusing frequency. Then, they
use a high-resolution algorithm such as MUSIC [8] to estimate the
DOA’s of the sources. They show that focusing reduces the resolution
threshold signal-to-noise ratio (SNR), which is defined as the SNR
for a prescribed probability of resolution. They also show that if
the integral of the signal covariance matrix taken over the frequency
spectrum is full rank, the method can be applied to coherent signal
iocalization. Hupg and Kaveh [5] use a unitary variant of the CSM
algorithm to avoid the focusing loss. They use the center frequency
for focusing.

Swingler and Krolik [9] prove that for & single-source scenario, it is
possible to have an unbiased estimate of the DOA’s if the centroid of
the source spectrum is selected as the focusing frequency. In [10], we
showed that for multiple sources, the CSM algorithm cannot provide
unbiased estimates of the DOA’s. Tn this work, we propose a method
to select the focusing subspace. The methed is based on minimizing
a subspace fitting error. The subspace fitting error for each frequency
bin is defined as the distance between the focusing matrix and the
transformed location matrix. Later, we minimize a tight bound to the
error. The simulation results show that using the method proposed
here reduces the resolution threshold SNR and the bias of the DOA’s.
estimates.

I, Tue CSM ALGORITHM

Consider an array of p sensors exposed to ¢ < p far-field wideband
sources. The output of the semsors in the frequency domain is
represented by

x(f) = A(£,0)s(f) + n(f) 1

where s(f) and n(f) are the Fourier transforms of the signal and
noise vectors, and A(f,8) = [a(f,81) - a(f,8g)] is the full-rank
p X ¢ matrix of location vectors. It is assumed that the signal and
noise samples are independent identicaily-distributed sequences of
complex Gaussian random vectors-with unknown covariance matrices
S(f) and 6”1, respectively. With these assumptions, the covariance
matrix of the observation vector at the frequency f; is given by

R(f)) = A(f,0)S(F)A7 (£,,8) + °T @

where the superscript H represents the Hermitian transposition,
For simplicity of notation, we suppress the frequency varjable and
represent R(f;) by R;, A(f;,0) by A, and so on.

The CSM algorithm [11] is based on formlng new- observation

vectors y; such that
y; =T;x; (3)

where the T';’s are called the focusing matrices. In the unitary variant
of the CSM algorithm [5], the T;, j = 1,...,J are selected from

- TJA"] ‘5

subject to Tf T; =1

min [|Ag
T;

“)

where || - || is the Frobenius matrix norm [4]. The solution to this
minimization is given by [4], [5] .

T, =V,W? )
where V; and W are the left and the right singular vectors of
AOA? In (5), A; and A, are assumed to be known. In practicg,
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a preliminary step is required to determine these matrices. The
preprocessing step involves using an ordinary beamformer to estimate
the DOA’s. These preestimated DOA’s are then used to determine
the focusing angles. The focusing angles are used in the structure of
the location matrix to generate A; and A¢. An alternative method
that avoids the pre-estimation step, but can only be applied to linear
arrays, is spatial resampling, as proposed in [2] and [7] (see also [3]).
The transformed observation vectors y; are used to form a sample
correlation matrix for each frequency bin. An average of these aligned
sample correlation matrices gives a universal sample correlation
matrix that can be used for detection and DOA estimation. In the
past, the focusing frequency in (5) has been chosen to be the
center frequency of the spectrum of the signals. This choice is not
optimal if the spectrum of the signal is asymmetric around the center
frequency or the sampling in the frequency domain is nonuniform.
In the following section, we propose a method that finds the optimal
focusing frequency.

III. FoCusING FREQUENCY SELECTION

Minimizing the subspace fitting error is an appropriate criterion for
focusing frequency selection, In particular, the focusing frequency
can be selected from

J
min min w;]| Ao — T,A]%,
o Y- wllA - ;A
subject to Tf-'ITJ =1
Ao € A(D)

©)

where w; is a normalized weighting factor proportional to the SNR
at the jth frequency bin with Zle w; = 1, and A(0) is the set of
all location matrices for the focusing angles # and is defined by

Al0)={A(f.0)| feF} M

where F is an interval for the frequency f. The elements of this set
are the location matrices with the DOA’s 8 and different frequencies.
The following lemma holds for any location matrix.

Lemma 1: The location matrix A of an array with isotropic
sensors located in an environment with uniform planar wavefronts
satisfies

7
Al =" llaill® = ®)
=1
Using Lemma 1 and (5), the subspace fitting error is given by
J
ij”AO - T, Al
=1 .
7

=W

lleH + 145117 — 2R tr(Ac A7 T)]

_2Jpq—2zzu i (AoA

i=1i=1

where the o;(B), ¢ =1,..., ¢ are the singular values of the matrix
B arranged in nonincreasing order, R(-) represents the real part of a
complex number, and tr(-) is the trace operator. From (9), it is seen
that the minimization problem (6) is identical to the maximization

maxz Z w]m AOA

j=1i=1
subject to Ao € A(9).

&)

(10)

Direct maximization of (10) is tedious, and the complexity in-
creases with the number of frequency samples. In the sequel, we

753

subspace fitting error
© IS o

N

L 1 1 L i 1 Il
8.8 0.85 0.9 0.95 1 1.08 1.1 1.15 1.2

10

Fig. 1. Subspace fitting error (9) as a function of the focusing frequency for
two-uncorrelated far-field wideband sources at 10 and 14° arriving at a linear
array of eight sensors with a 20 dB SNR.

-present a suboptimal method that is based on maximizing an upper
bound to (10).

The following lemma has been adopted from [4].

Lemma 2: 1f A/B € Mm » are given matrices with ordered

singular values o1(A) > -+ > 04(A) > O and o1(B) > -+ >
q(B) > 0, where ¢ = mm{m n} then
g .
A -B|* > Z ) - oi(B). (1)
Application of Lemma 2 to (9) results in the following lemma.
Lemma 3: For every Ao, A; € Mp g and 30wy =1
J g g
Z:Z:u,cri AoA SZZuJU (Ag) o‘z AH) (12)

7=1:=1 7=1 i=1

The proposed method is based on maximizing the right-hand side
of (12). Define

7
i & Zu‘ja,(A (13)
Jj=1
The maximization problem is represented by
g
< ioi(A 14
IT}%X;/.LO'( 0)s (14)

subject to Ao € A(8).

This is a one-variable maximization problem that can be solved
by searching for the best fq. The computational complexity for
the maximization (14) is independent of the number of frequency
samples.

The simulation studies, which are reported in the following section,
show that in the vicinity of the maximum point, the bound is tight.
The tightness of the bound at the maximum point indicates that the
method achieves a near-optimum subspace fit.

IV. SIMULATION RESULTS

Assume that a uniform linear array of eight sensors is exposed
to two far-field wideband sources arriving from 10° and 14°. The
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Fig. 2. Left- and right-hand-sides of (12) as functions of the focusing
frequency for two uncorrelated far-field wideband sources at 10 and 14°
arriving at a Hnear array of eight sensors with a 20 dB SNR.
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Fig. 3. Norm of the bias vector for the DOA estimation of two uncorrelated
far-field wideband sources arriving at a linear array of eight sensors with a
20 dB SNR. .

‘ signals are uncorrelated and have a 40% bandwidth relative to the
center frequency. The spectrum for each of the signals is given by

L J3f-4 08 F<12
505 = {0 otherwise,
The spectrum is sampléd using a 16-point FFT algorithm, The data
at each frequency bin contain 100 snapshots. Using an ordinary
beamformer, a single source is detected at 13°. We add two extra
DOA’s at 9° and 17° as the focusing angles. The subspace fitting
error (9) is shown in Fig. 1. It is seen that the error is minimized
at the frequency 1.1, which is 10% higher than the center frequency
and 3% higher than the centroid frequency. The left- and the right-
hand sides of (12) are compared in Fig. 2. Note that in the vicinity
of the optimum point, the bound is tight. For a fixed SNR at 20 dB,
we have found the bias of the DOA estimates for different focusing
frequencies. The results are depicted in Fig. 3. The bias of the DOA
estimate for the centroid frequency is 0.1246 compared with 0.0487
for the optimum focusing frequency.
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TABLE I
R2SOLUTION OF THE CSM ALGORITHM FOR TwQ CLOSELY SPACED
‘WIDEBAND SIGNALS A8 A FUNCTION OF THE FoCUSING FREQUENCY

SNR (dB)
fo =5 0 5 10
0.90] 0 6 36 64
095| 0 22 86 100
1.00] 2 41 99 100
1.05| 1 71 100 100
1.10| 6 89 100 100
115 9 99 100 100
1.20 | 11 100 100 100

TABLE 1I

NORM OF THE BI1AS VECTOR FOR Two CLOSELY SPACED
WIDEBAND SIGNALS AS A FUNCTION OF THE FOCUSING FREQUENCY

SNR (dB)
Jfo -5 0 -5 10

0.90 - 122 1.48 .1.55

095§ - 1.13 1.10 0.98

1.00{1.57 0.88 0.68 0.57

1.05 | 0.59 0.76 0.36 0.24

1.10 { 1.08 0.54 0.22 0.13

1.1510.58 042 0.25 0.24

1.20 1 0.79 0.37 0.39 0.40

045 T T
0.4h . 4
0.35} R . _
'g 0.3t N . -
gozs— \\0--~‘__‘~_ fo=1.0 1
%’ el
g o2 4
§0,15- E
0.4F ]
0.054 ' o
‘\\i\\f‘o =11
05 110 1'5 ’ 20

SNR

Fig. 4. Mean-square error of the CSM algorithm for the two focusing
frequencies 1 and 1.1 and for two uncorrelated far-field wideband sources
at 10° and 14° amiving at a linear array "of eight sensors,

To compare the resolution capability of the CSM algorithm, we
performed 100 independent trials and counted the number of times
that the two DOA’s were resolved as two peaks in the spectrum of the *
MUSIC algorithm. The results for different focusing frequencies are
compared in Table I. The resolution threshold SNR at the optimum
focusing frequency is lower than that for the center frequency. There
are two factors that affect the resolution SNR. First, the optimum
focusing frequency has a smaller subspace fitting error, and second,
it is higher than the center frequency. The separation between. the
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Fig. 5. Resolution of the CSM algorithm for two closely spaced wideband
signals as a function of the focusing frequency.

TABLE III
REsoLUTION OF THE CSM ALGORITHM FOR FOUR WIDERAND
SIGNALS AS A FUNCTION OF THE FOCUSING FREQUENCY

SNR (dB)
fo [-5_0 5 10 15 20
090] 0 0 0 0 0 0
095| 0 0 0 0 0 0
100l 0 0 1 9 7 0
1.05] 0 0 19 76 99 100
110 0 1 72 100 100 100
115/ 0 9 92 100 100 100
1.20| 0 17 100 100 100 100

location vectors for higher frequencies is larger, which results in a
better resolution performance. The resolution at 1.2 is better than the
other frequencies. However, the results of Table II and Fig. 3 show
that for SNR’s above the resolution threshold, the bias is minimum at
the optimum focusing frequency. The mean-square error of the CSM
algorithm for the two focusing frequencies 1.0 and 1.1 is compared
in Fig. 4,

We have also studied a multigroup scenario. In the second example,
the signal of four sources located at 10°, 14°, 33°, and 37° arrive
at the same array as in the previous example. The focusing angles
are 9°, 13°, 17°, 31°, 35°, and 39°. The spectrum of the signals
are the same as the first example. The subspace fitting error (9) is
depicted in Fig. 5. The optimum focusing frequency is again 1.1.
Table IIT represents the resolution of the CSM algorithm for different
SNR’s and focusing frequencies. Note that at the center frequency
1.0, detection is not possible even at high SNR’s. If the number of
sensors is increased, the array can detect signals using the center
frequency for focusing. However, the resolution threshold for the
optimum frequency is much smaller than that for the center frequency.
The bias and the mean-square error are given in Tables IV and V. As
these tables show, the bias and the mean-square error for the optimum
frequency are significantly smaller than the corresponding values for
the center frequency. Thus, at fo = 1.1, we simultaneously get good
resolution capability (Table III) and low bias (Table IV) over a range
of SNR’s.
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) TABLE IV
NORM OF THE Blas VECTOR FOR FOUR WIDEBAND
SIGNALS AS A FUNCTION OF THE FOCUSING FREQUENCY

SNR (dB)
fo [=5 0 5 10 15 20
0% - - - - - -
095 - - - - - -
100 - - 205 166 151 -
1.05| - - 137 095 0.77 0.67
110 | - 174 090 044 028 0.20
115| - 128 0.75 0.65 0.65 0.66
120 | - 1.35 096 1.02 1.02 1.04

TABLE. V

NORM OF THE MEAN-SQUARE-ERROR VECTOR FOR FOUR
WIDEBAND SIGNALS AS A FUNCTION OF THE FOCUSING FREQUENCY

SNR (dB)
fo |5 O 5 10 15 20
090 - - - - - -
095 - - - - - =
100 - - 278 1.67 127 -
1.05| - - 153 0.68 0.40 0.28
1.10| - 2.11 0.64 0.16 0.06 0.03
1.15| - 135 046 0.32 029 0.28
120 - 1.49 0.73 0.71 0.67 0.68
V. SUMMARY

In this correspondence, we have proposed a method to determine
the optimal focusing frequency for the coherent signal-subspace
method with unitary transformations. We have defined a criterion
based on the subspace fitting error and optimized a tight upper
bound to it. The simulation results show that the method successfully
finds the global optimum value and improves the performance of
the estimation by reducing the bias, the mean-square error, and the
resolution SNR threshold.
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