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say, the center frequency of the spectrum of the signals, and transform 
the  subspace at each  frequency  bin  into  the  subspace created by the 
span of the location vectors at the focusing  frequency.  Then, they 
use  a high-resolmion algorithm such as MUSIC [SI to  estimate  the 
DOA’s of the sources. They  show that focusing reduces the resolution 
threshold signal-to-noise ratio ( S M Z ) ,  which is defined as the SNR 
for a prescribed probability of resolution. They also show that if 
the integral of the signal covariance matrix taken over the frequency 
specwm is full rank, the method can be applikd to coherent signal 
localization. Hupg and Kaveh [5] use a unitary variant of the CSM 
algorithm to avoid the  focusing loss. They use the center frequency 
for focusing. 

Swingler and Krolik [ 9 ]  prove that for h single-source scenario, it  is 
possible to have an unbiased estimate of The DOAk if the centroid of 
the source spectrum is selected as the focising  frequency. In [lo], we 
showed that  for  multiple  sources, the CSEVI algorithm cannot provide 
unbiased estimates of the DOA’s. In this work, we propose  a method 
to select the focusing subspace. The  method is based on minimizing 
a  subspace fitting error.  The  subspace fitting error for each frequency 
bin is defined as the distance between the focusing matrix and the 
rransfomed location matrix. Later, we minimize a tight bound to the 
error. The simulation results show that using the method proposed 
here reduces the resolution threshold S N R  and the bias of the DOA’s 
estimates. 

n. THE CShI hGORITHM 

Consider an array of p sensors exposed to q < p far-field wideband 
sources. The output of the sensors in the frequency domain is 
represented by 

x(f) = A(f,B)si.f) + N f i  (1) 

where s ( J )  and n(f)  are  the Fourier transforms of the signal and 
noise vectors, and A(f,ff) = [a(f,8l) ‘ . ‘ a ( f , S , ) ]  is the full-rank 
p x q matrix of location vectors. It is assumed that the signal and 
noise samples are independent identically-distributed sequences of 
complex  Gaussian  random  vectors-with unknown covariance matrices 
S(f)  and a21, respectively. With these assumptions, the covariance 
matrix of the observation vector at  the frequency fj is given by 

w,) = A ( f j , @ ) S ( f J ) A H ( f j , @ )  + A  (2) 

where the superscript X represents the Hermitian transposition. 
For simplicity of notation, we suppress the frequency variable and 
represent R(fj) by Rj, A(fi, e )  by A., , and so on. 

The CSM algorithm [ll] is based on forming new observation 
vectors yj such that 
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The Optimal Focusing Subspace for 
Coherent Signal Subspace Processing 

S. Valaee and P. Kabal 

Abshacf-In this correspondence, we introduce a technique to deter- 
mine an optimal  focusing  frequency for the direction-of-arrival stima- 
tion of wideband  signals  using the coherent signal-subspace processing 
method. We minimize the subspace fitting error to  select an optimal 
focusing  frequency.  Direct  optimization of this criterion can be computa- 
tionally  complex-the  complexity  increases  with the number of frequency 
samples. An alternative technique is introduced that performs nearly 
as we11 as the optimal method.  This suboptimal technique is based on 
minimizing a tight  bound to the error. The computational complexity 
of the suboptimal method is independent of the number of frequency 
samples.  The  simulation  results show that the  proposed  method  reduces 
both  the  bias of estimation and the resolution  threshold signal-to-noise 
ratio (SNR). 

I. INTRODCCTION 
Amay processing techniques can be used to locate wideband 

signals. A wideband signal has a bandwidth comparable to the center 
frequency. Several methods for  the processing of wideband signals 
using an m a y  of sensors have been proposed in the literature [ll], 
[l], [6]. The first step  in  son^ of these techniques is to obtain samples 
of the signal in the frequency domain. These  samples are found by 
applying a discrete Fourier transformation to the time  samples of the 
signal or by using a filter bank. The  samples of the spectrum can be 
uniformly or nonuniformly spaced. 

Many array processing techniques use th8 concept of the signal 
subspace. Tne signal subspace is the span of the  location vectors of 
the array for fixed directions-of-arrival (DOA’s). Since  each location 
vector is a  fanction of frequency, the signal  subspace  depends on 
the frequency of the observation. For wideband signals, the  signal 
subspaces at different frequencies do not overlap, and as  a result, 
the observation vectors at  the  frequency bins cannot be directly 
added to each other. Wang and Kaveh [ll] propose focusing of 
the observation vectors. Focusing involves transforming the signal 
subspaces at different frequency bins into a predefined subspace 
(called the foczrsing subspace). They choose an arbitrary frequency, 
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y j  = Tjxj ( 3 )  

where the T,’s are called the focusing matrices. In the unitary variant 
of the CSM algorithm [5] ,  the Tj,  j = 1,. . . , J are selected from 

min IlAo - T,A.,/I, 
T j  

subject to TFT, = I 

where 1 1  . 1 1  is the Frobenius matrix  nolm [4]. The solution to this 
minimization is given by [4], [ 5 ]  

(4) 

T, = V,Wf 0 )  

where Vj and W, are the left and the right singular vectors of 
A0 A;. In (5), A, ‘and A0 are assumed to be known. In  practice, 
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a  preliminary  step is required  to  determine  these  matrices.  The 
preprocessing  step  involves  using  an  ordinary  beamformer  to  estimate 
the  DOA's.  These  preestimated  DOA's  are  then  used to determine 
the focusing  angles. The  focusing  angles are used  in  the  structure  of 
the  location  matrix  to  generate A, and Ao. An alternative  method 
that  avoids  the  pre-estimation  step,  but  can  only  be  applied  to  linear 
arrays, is spatial  resampling, as proposed in [2 ]  and  [7]  (see also [3]). 

The  transformed  observation  vectors yz are  used to form  a  sample 
correlation  matrix  for  each  frequency  bin. An average of these  aligned 
sample  correlation  matrices  gives  a  universal  sample  correlation 
matrix  that  can be used  for  detection and DOA  estimation. In the 
past,  the  focusing  frequency  in (5) has  been  chosen to be  the 
center  frequency  of  the  spectrum  of  the  signals. This choice is not 
optimal if the  spectrum of the  signal is asymmetric  around  the  center 
frequency  or  the  sampling in the  frequency  domain is nonuniform. 
In  the  following  section,  we  propose  a  method  that  finds  the  optimal 
focusing  frequency. 

111. FOCUSIXG FREQUENCY SELECTION 10 

Minimizing  the  subspace  fitting  error is an appropriate  criterion  for Fig. 1. Subspace  fitting  error (9) as a function of the  focusing  frequency for 
focusing  frequency  selection,  In  particular, h e  focusing  frequency two uncorrelated far-field wideband  sources at 10 and 14' arriving at a linear 
can  be  selected  from array of eight sensors with a 20 dB SNR. 

J 

m i n n l i n C w J l l ~ o  - T,A,II', 
.fa Ti 3 = 1  

subject  to TYT, = I. The  following  lemma  has  been  adopted  from [4]. 

( 6 )  .present  a  suboptimal  method  that is based  on  maximizing  an  upper 
bound to (10). 

E A(e) Lemma 2: If A,  B E M,,,, are  given  matrices  with  ordered 
singular  values r l (A)  2 . . .  2 r9 (A)  2 0 and u l ( B j  2 . . .  2 

where w, is a  normalized  weighting  factor  proportional to the SNR O q ( ~ )  1 0, where = miIl{m, n} ,  then 
at the j t h  frequency  bin  with x:=, wl = 1, and A(8) is the  set of 
all location  matrices  for the foGLng angles 8 and is defined by 

4 0 )  = { A ( f , @ )  I f E F} (7) 

where 7 is an  interval  for the frequency f . The  elements  of  this  set 
are  the  location  matrices  with  the  DOA's 6' and  different  frequencies. 
The  following  lemma  holds  for  any  location  matrix. 

Lemma 1: The  location  matrix A of  an  array  with  isotropic 
sensors  located  in an environment  with  uniform  planar  wavefronts 
satisfies 

c1 

I IAIIZ = 11a-2Il2 = PQ. (8) 
,=1 

Using  Lemma 1 and (5 ) ,  the subspace  fitting  error is given by 

where the uz (B j ,  i = 1: . . . , y are  the  singular  values  of the matrix 
B arranged  in  nonincreasing  order, R(.) represents  the  real  part of a 
complex  number,  and tr(.) is the trace  operator.  From (9),  it is seen 
that  the  minimization  problem (6) is identical to the  maximization 

J=1 i = l  

subject to A. E A(@). 

Application of Lemma 2 to (9) results  in  the  following  lemma. 
Lemma 3: For  every Ao,  A, E M p . 9  and Cf=,zi = 1 

J s  J Y  

The  proposed  method is based  on  maximizing  the  right-hand  side 
of (12). Define 

r 

,= I  

The  maximization  problem is represented by 

subject  to AO E A(6). 

This is a  one-variable  maximization  problem  that  can  be  solved 
by searching  for  the  best fo. The  computational  complexity  for 
the  maximization  (14) is independent of the  number of frequency 
samples. 

The  simulation  studies,  which  are  reported in the  following  section, 
show  that in  the vicinity of the maximum  point,  the  bound is tight. 
The  tightness of the  bound at the  maximum  point  indicates  that the 
method  achieves  a  near-optimum  subspace fit. 

Direct  maximization of (10) is tedious,  and the complexity  in- Assume  that  a  uniform  linear  array of eight  sensors is exposed 
creases  with  the  number  of  frequency  samples. In the  sequel,  we to  two  far-field  wideband  sources  arriving  from 10' and 14'. The 
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Fig.  2. Left-  and  right-hand-sides of (12) as functions of the focusing 
frequency for two uncorrelated  far-field  wideband sources at 10 and 14' 
arriving at a linear array of eight sensors w-ith a 20 dB SNR. 

s!, I 
0.95 1 1.05 1 .I 1.15 

io 
1.2 

Fiz. 3. Norm of the  bias  vector  for  the DOA estimation of two  uncorrelated 
far-field  wideband sources  arriving at a linear array of eight sensors with a 
20 dB SNR. 

signals are uncorrelated and have a 40% bandwidth relative to the 
center frequency.  The spectrum for each of the  signals is given by 

- 4 0.8 5 f 5 1.2 
otherwise. 

Tne spectrum is sampled using a 16-point FFI algorithm. The  data 
at each frequency bin contain 100 snapshots. Using an ordinary 
beamformer, a single source is detected at 13". We add two extra 
DOA's at 9" and 17" as the focusing angles. The subspace fitting 
error (9) i s  shown in  Fig. 1. It is seen that the error is minimized 
at  the  frequency 1.1, which is 10% higher than  the center frequency 
and 3% higher than the centroid frequency.  The left- and the right- 
hand sides of (12) are compared in  Fig. 2. Note that in the vicinity 
of the  optimum point, the bound is tight. For a fixed SNR at 20 dB, 
we have found the bias of the  DOA estimates for different focusing 
frequencies.  The results are depicted in Fig. 3. The bias of the  DOA 
estimate  for the centroid frequency is 0.1246 compared with 0.0487 
for  the  optimum  focusing frequency. 

TABLE I 
~ O L ~ O X  OF THE CSM ALGORITHM FOR Two CLOSELY SPACED 
WIDEBAND SIGNALS A S  A FUNCTION OF THE FOCUSING FREQL-EKCY 

SNR (dB) 
f* -5 0 5 10 

0.90 

11 100 100  100 1.20 
9  99 100  100 1.15 
6 89 100 100 1.10 
1 71 100 100 1.05 
2 41 99 100 1.00 
0 22 86 100 0.95 
0 6 36 64 

TABLE I1 
NOW4 OF THE BWS VECTOR FOR TWO CLOSELY SPACED 

WIDEBAhW SIGNALS AS A FIJNCTIOY OF THE FOCUSING FREQLEKCY 

SNR (dB) 

0.95 
1.00 
1.05 
1.10 
1.15 
1.20 - 

- 1.13 1.10 0.98 
1.57 0.88 0.68 0.57 
0.59 0.76 0.36 0.24 
1.08 0.54 0.22 0.13 
0.58 0.42 0.25 0.24 
0.79 0.37 0.39 0.40 

fO = 1 .o 
-e----- - _  

0.0 \ 
fo = 1.1 - 

O5 
x 

10 15 20 
SNR 

Fig. 4. Meamsquare error of the CSM algorithm  for  the two focusing 
frequencies 1 and  1.1  and for two uncorrelated  far-field  wideband  sources 
at 10' and 14' arriving at a linear array-of eight sensors., 

To compare the resolution capability of the CSM algorithm, we 
performed 100 independent trials and counted the number of times 
that the two  DOA's  were resolved as two peaks in the spectrum of the 
MUSIC algorithm. The results for different focusing frequencies are 
compared in Table I. The resolution threshold SNR at the opt in~un 
focusing frequency is lower than that for the center frequency. There 
are two factors that affect the resolution SNR. First, the optimum 
focusing  frequency has a smaller subspace fitting error, and second, 
it is higher than the center frequency.  The separation between the 
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Fig. 5. Resolution of the CSM algorithm for two closely  spaced  wideband 
signals as a function of  the focusing frequency. 

TABLE I11 
RESOLUTION OF THE CSM ALGORITHM FOR FOUR WIDEBAND 

SIGNALS AS A FUNCTIOX OF THE FOCUSING FREQUENCY 

SNR (dB) 
fo -5 0 5 10  15  20 
0.90 0 0 0 0 0 D 
0.95 
1.00 
1.05 
1.10 
1.15 
1.20 - 

0 0 0 0 0 0  
0 0 1 9 7 0  
0 0 19 76  99  100 
0 1 72 100 100  100 
0 9 92 100 100  100 
0 17  100 100 100  100 

location vectors for higher frequencies is larger, which results in a 
better resolution performance. The resolution at 1.2 is better than the 
other frequencies. However, the results of Table 11 and Fig. 3 show 
that for SNR’s  above the resolution threshold, the bias is minimum at 
the optimum focusing frequency. The mean-square error of the CSM 
algorithm for  the two focusing frequencies 1.0 and 1.1 is compared 
in Fig. 4, 

We have also studied a multigroup scenario. In  the second example, 
the signal of four sources located at lo”, 14”, 33”,  and  37” arrive 
at the same array as  in  the previous example. The focusing angles 
are 9” ,  13’.  17’, 31”, 35’, and 39”. The spectrum of the signals 
are the  same as the first example,  The subspace fitting error (9) is 
depicted in  Fig. 5. The  optimum focusing frequency is again 1.1. 
Table I11 represents the resolution of the CSM algorithm for different 
SNR’s and focusing  frequencies.  Note that at  the center frequency 
1.0, detection is not possible even  at high SNRs. If the number of 
sensors is increased, the array can detect signals using the center 
frequency for focusing. However, the resolution threshold for  the 
optimum frequency is much smaller than that for the center frequency. 
The bias and the mean-square error are given in Tables IV and V. As 
these tables show, the bias and the mean-square error for the optimum 
frequency are significantly smaller than the corresponding values for 
the center frequency. Thus,  at fo = 1.1, we simultaneously get  good 
resolution capability (Table III) and low bias (Table IV) over a range 
of SNR’s. 

TABLE IV 
NORM OF THE BIAS VECTOR FOR FOUR WIDEBAND 

SIGNALS  AS .4 FUNCTION OF THE FOCUSING FREQUENCY - 
fQ - 
0.90 
0.95 
1.00 
1.05 
1.10 
1.15 
1.20 

SNR (dB) 
-5 0 5 10  15  20 

- - - - - - 
- - 2.05 1.66 1.51 - 
- - 1.37 0.95 0.77 0.67 
- 1.74 0.90 0.44 0.28 0.20 
- 1.28 0.75 0.65 0.65 0.66 
- 1.35 0.96 1.02 1.02 1.04 

TABLE V 
NORM OF THE MEAS-SQUARE-ERROR VECTOR FOR FOUR 

WlDEBhKD SIOXALS AS A F ~ C T I O N  OF THE FOCUSING FREQL-ENCY - 
fo 
0.90 
0.95 
1 .oo 
1.05 
1.10 
1.15 
1.20 

- 

- 

SNR (dB) 
-5 0 5 10  15 20 

- - 2.78 1.67 1.27 - 
- - 1.53 0.68 0.40 0.28 
- 2.11 0.64 0.16 0.06 0.03 
- 1.35 0.46 0.32 0.29 0.28 
- 1.49 0.73 0.71 0.67 0.68 

V. SUMMARY 
In this correspondence, we  have proposed a method to determine 

the optimal focusing frequency for  the coherent signal-subspace 
method with unitary transformations. We have defined a criterion 
based on the  subspace fitting error and optimized a tight upper 
bound to it. The simulation results show that the method successfully 
finds the global optimum value and improves the performance of 
the estimation by reducing the bias, the mean-square error, and the 
resolution SNR threshold. 
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Strict  Identifiability of Multiple FIR Channels 
Driven by an Unknown Arbitrary  Sequence 

Yingbo Hua and Mati Wax 

Abstract--A sy-stem of multiple  finite  impulse  response (FIR) channels 
driven by an unknown input is  said  to be strictly identifiable if, in 
the absence of noise,  the  given channel outputs can only be realized 
by a unique (up to a constant) system  impulse  response and a unique 
input sequence. In this  correspondence, we show  necessary and sufiicient 
conditions for strict identifiability,  and  establish a connection among 
strict identifiability, a cross-relation-based (CR-based) identifiability  and 
a Fisher information-based (FI-based) identifiability. 

I. INTRODUCTION 
The problem of blind identification of multiple FIR channels 

driven by a common input arises in  a wide range of applications. 
It has recently received increasing attention in  the  signal processing 
community. Much attention has been paid to identifiability-related 
issues of this problem. Assuming that the  input  to , a l l  channels 
is white, stationary, and infinitely long, authors of [1]-[3] studied 
channel identifiability conditions based on second-order statistics 
of the channel outputs. Assuming that the input is an unknown 
deterministic sequence. authors of [4] and [5]  did a similar study 
based on a cross-relation (CR) equation in the  absence of noise. 
An Ad-channel system is said to be CR identifiable if the system 
impulse response can be uniquely identified by the CR method [SI. 
In [7] ,  channel identifiability was further analyzed based on a Fisher 
information (FI) matrix. An dl-channel system is said  to be FI 
identifiable if the FI matrix has nullity equal to  one. An equivalence 
between FI identifiability and CR identifiability was established in 

In this paper. we study the identifiability of the  M-channel FIR 
system in  a strict sense. An M-channel FIR system is said  to  be 
strictly identifiable if the given channel outputs can  only  be realized 
by a unique system impulse response and a unique input sequence. 
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In contrast to several existing definitions of identifiability. strict 
identifiability is directly based on a finite length of channel outputs 
instead of on certain statistics [1]-[3] or certain preprocessing [4], 
[5] of channel outputs. The word “smct” implies that if an d f -  
channel system is strictly identifiable, then  it must be identifiable 
by some method (e.g.,  exhaustive search); and, on the other hand, 
if an M-channel  system  is strictly not identifiable, then it can 
not be identifiable by any method. (It will be clear that a system 
can only be either strictly identifiable or strictly not identifiable. 
So, “stricly not identifiable” will have the same meaning as “not 
strictly identifiable.”) Surprisingly, however, strict identifiability will 
be  shown to be equivalent to the CR- and FI-based identifiabilities 
provided that the  number of the output samples of each channel is 
no less than twice  the maximum order of the FIR channels (which 
is a very mild condition). 

II. THE M-CHAhNEL FIR SYSTEM 

For convenience, the  M-channel system detailed in [7] is briefly 
reformulated in this section. For ?/I parallel FIR channels dnven by 
a  common  input sequence s ( k ) ;  the output of the ith channel can 
be written as 

Y, = H(, , s  (2.1) 

where yi is the A r  x 1 output vector of the ith,  channel;  the 
X x ( N  + L )  Sylvester matrix [lo] of the impulse  response h , i k )  
of the ith channel; and s the ( S  + L) x 1 input vector. Note  that -1’ 
is the total number of output samples from each channel, and L the 
maximum  order of the M channels. Alternatively, we can yrite 

Y, = Sht (2 .2 )  

where S is the N x (L+l )  Toeplitz matrix [lo] of the input sequznce; 
and hi the (L + 1) x 1 vector of the  impulse  response of the i th  
channel. Stacking all channels outputs into  one vector yields, from 
(2.  l),  the following: 

Y = H r f s  (2.3) 

and  from (2.2), the following: 

Y = S:\fh (2.4) 

where y is the stacked vector of {yl. ’ ’ , Y,,,~}. B.M the generalized 
Sylvester matrix [ lo] of all channels’ impulse responses; Sw = 
diag{S,. . . S}; and h the stacked vector of { h l , .  . . hiv1}. 

1II. STRICT IDENTIFL~BILITY 
Definition: The  M-channel FIR system is said to be strictly 

identifiable from  its output y if there do not exist h’ and s‘ where h’ is 
linearly independent of h or s’ is linearly independent of s such that 

(3.1) Y = H ; ~ J s  = E A ~ S  I I  

or equivalently 

y = S.wh = S!wh’ (3.2) 

where and Sh are defined by’h‘ and si, respectively. 
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