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ABSTRACT

V oice activity detection (VAD) algorithms have be-

come an in tegral part of many of the recently stan-

dardized wireless cellular and P ersonal Communica-

tions Systems (PCS). In this paper, we present a com-

parative study of the performance of three recently pro-

posed VAD algorithms under various acoustical back-

ground noise conditions. We also propose new ideas to

enhance the performance of a VAD algorithm in wire-

less PCS speech applications.

1. INTRODUCTION

Conversational speech is a sequence of consecutive seg-

ments of silence and speech. In wireless telephony, the

user is often roaming and thus encountering di�erent

types and levels of background acoustical noises. This

bac kground noise which contaminates the signal results

in either noise only or speech plus noise segments. In

many speech processing applications, it is desirable to

detect speech in the noise. This process is called voice

activit y detection (VAD) [1]. The VAD operation can

be viewed as a decision problem in which the detec-

tor decides betw een noise only, or of speech plus noise.

This is a challenging problem in noisy acoustical envi-

ronments.

V oice activity detection is used in a variet y of speech

communication systems such as speech coding, speech

recognition, hands-free telephony, audio-conferencing,

and echo cancellation. The recently proposed multiple-

access sc hemes, such as CDMA, and enhanced TDMA

for cellular and PCS systems use some form of V AD

[1]. Moreover, in GSM-based wireless systems a VAD

module is used for discontinuous transmission to save

the battery life of portable units [2]. V ariable bit rate
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(VBR) coding has been recently adopted for CDMA-

based cellular and PCS systems to enhance capacity

by reducing interference. A V ADdevice is an indis-

pensable part of any VBR codec as it controls both the

average bit rate, and the overall qualit yof the coder

[3].

This paper is organized in �ve parts. Section 2

starts with a general review of the basics of a V AD

design. It then describes, in some detail, three selected

V ADdesigns for the this study. Section 3 reports the

results of a simulation study that has been performed

to study the performance of the three VADs under var-

ious background noise conditions. We then discuss and

analyze the simulation results in Section 4. Finally,

conclusions are presented in Section 5.

2. VOICE ACTIVITY DETECTION

ALGORITHMS

The basic principle of a VAD device is that it extracts

some measured features or quantities from the input

signal and then compare these values with thresholds,

usually extracted from noise only periods. Voice ac-

tivity (VAD=1) is declared if the measured values ex-

ceed the thresholds. Otherwise, no speec h activity or

noise (VAD=0) is present. What generally character-

izes a VAD design is the way it selects its features, and

the way it de�nes and updates the thresholds. In gen-

eral, a V ADalgorithm outputs a binary decision in a

frame-by-frame basis where a \frame" of the input sig-

nal is a short unit of time such as 20{40 ms. Accuracy,

robustness to noise conditions, simplicity, adaptation,

and real-time processing are some of the required fea-

tures of a good VAD.

In the early V ADalgorithms, short-time energy,

zero crossing rate, and LPC coe�cients w ereamong

the common features used in the detection process [4].

Cepstral features [5], formant shape [6], a least-square

periodicity measure [7] are some of the recent ideas in



VAD designs.

In this work, we consider three recently proposed

VAD algorithms. These include the VAD used in the

GSM cellular system [1,2], the VAD used in the en-

hanced variable rate codec (EVRC) of the North Amer-

ican CDMA-based PCS and cellular systems [3], and a

third-order statistics (TOS)-based VAD [8].

2.1. The GSM VAD

In the GSM VAD, an adaptive noise-suppressor �lter

is used to �lter the input signal frame. The coe�cients

of the �lter are computed during noise-only periods.

The energy of the �ltered signal is compared to a noise-

dependent threshold. As both the �lter coe�cients and

the threshold are computed during noise-only frames,

special measures are taken to identify noise frames.

These include both signal stationarity and periodicity

tests. The major weakness of this VAD lies on the sta-

tionarity assumption of background noise. This is not

always the case for many of the commonly encountered

noises in wireless telephony.

To improve the performance of the GSM VAD for

both stationary and non-stationary noises, Srinivasan

and Gersho [1] proposed several new features to the ba-

sic VAD design. These include a multi-band (4 bands)

energy comparison, spectral atness measurement, and

using the fraction of the energy of the low frequency

band. This improved GSM VAD is more powerful as

it relies on multiple-thresholds to make the �nal deci-

sion. Some of these thresholds are determined empiri-

cally and the others are dynamically updated based on

signal measurements.

2.2. The EVRC VAD

The EVRC coder [3] uses a 3-rate determination algo-

rithm (RDA) to select the appropriate rate and coding

strategy for each input frame. The lowest rate signi-

�es a noise-only frame. For our comparative study,

we have changed this RDA to output a binary VAD

ag. The basic idea of this VAD is similar to the GSM

VAD or its improved version. However, the novel part

of this VAD is its dynamic updating of the thresholds

in a way that copes with di�erent background noise

environments and conditions. The spectrum of the in-

put signal is divided into two bands and the energy in

each band is compared against two thresholds. Speech

is detected if the energy in each band is greater than

the corresponding lowest threshold. The thresholds are

scaled versions of estimated sub-band noise energies

from previous frames. For more details about the VAD

implementation, see [3].

2.3. The TOS VAD

Symmetrically distributed (non-skewed) processes are

characterized to have a third-order cumulant (TOC)

that is identically zero at all lags. However, speech sig-

nals have been observed experimentally to be skewed

enough to produce signi�cantly non-zero TOC at all

lags. Under the assumption that many noises can be

modeled as Gaussian or symmetrically distributed pro-

cesses, it is possible to discriminate speech from noise.

In [8], a novel time domain Gaussianity test is used in

the speech detection process. The test statistic of this

VAD, d̂ is de�ned as

d̂ = ĉt
3yĈ

�1

0
ĉ3y: (1)

In this equation, ĉ3y is the third-order cumulant

of a given frame, and Ĉ0 is the covariance matrix of

the TOC estimated from R initial noise-only frames.

Speech is detected if d̂ exceeds a selected threshold,

otherwise the frame contains noise. One major feature

of this VAD is that it has a �xed noise-independent

threshold, T given as �2Q(�), where � is a pre-selected

probability of false alarm (PF ) and Q is the number of

lags used in the TOC computation. The value of the

threshold is obtained from the chi-square (�2Q) table

[8].

3. SIMULATION RESULTS

We have implemented the aforementioned VAD algo-

rithms and tested their performance for di�erent noise

environments and at various noise levels. For the pur-

pose of this study, we have recorded several acousti-

cal environmental noises (bus, street, restaurant) and

used some noise signals from the NOISEX-92 database

(car noise, babble) [9]. Background noise was digi-

tally added to clean speech with SNR values of 20,

10, and 0 dB. The performance of a given VAD al-

gorithm is a function of both the noise level (SNR) and

the structure of the background noise (stationary, non-

stationary, white, or periodic). In Figures 1{8, we show

on each �gure the binary output of each VAD super-

imposed on a noisy speech signal. Due to the space

limitations, we show the VAD results only for a high

SNR (20 dB) and for a very noisy environment (0 dB).

It is common in modern VAD algorithms to use a

`hangover' period of few frames to delay any pre-mature

transition from speech to noise [1,2,3]. This is to min-

imize the probability of missing speech especially for

low-energy unvoiced speech. These hangover mecha-

nisms are generally not e�ective in correcting isolated

VAD errors (i.e `one' among a sequence of zeros or vice

versa). For many VAD applications (especially speech

coding), it is desirable to clean up such errors. We



have developed an isolated error correction mechanism

(IECM) that signi�cantly corrects the VAD decision in

away that makes it more useful to speech applications.

The basic idea of the IECM is that we delay the deci-

sion by 2 to 3 frames to monitor the VAD decisions in

neighboring frames. If the current frame VAD decision

is di�erent from its close neighbors, then its VAD ag

is changed to be similar to the other frames. This is

repeated for each frame to remove any isolated errors.

In Figure 7, we show the e�ectiveness of this algorithm

in enhancing the VAD results.

4. DISCUSSION

In this paper, the simulation results shown in Figures

1{6 are the VAD decisions after isolated error correc-

tion. The results show a consistent superiority of the

EVRC VAD in detecting speech for almost all types of

noise and even for very low SNR. However, it occasion-

ally detects noise as speech (false alarm) especially for

babble (simultaneous background conversations) noise

as SNR gets low. The TOS VAD is ranked overall sec-

ond in performance and shows almost-perfect detection

results for babble noise at 0 dB.

The GSM VAD exhibits good performance under

stationary noise environments while it has di�culty dis-

tinguishing speech from noise in non-stationary noises

such as buses, babble, and street. Also, its perfor-

mance deteriorates for low SNR (below 20 dB). The

GSM VAD results clearly get improved using the mod-

i�cations suggested in [1] but still the robustness of the

VAD is not guaranteed at low SNRs. We have observed

that high-energy voiced speech segments are always de-

tected in all VADs under very noisy conditions. How-

ever, low-energy unvoiced speech is commonly missed.

Conventionally, the input to the VAD is the con-

versational speech signal. The linear prediction (LP)

residual has been used before as a tool in voicing de-

cision algorithms to classify speech as voiced or un-

voiced. In this work, we have also evaluated using the

LP residual as the input signal to the VAD algorithm.

Thus a standard linear prediction analysis is done �rst

and then the output of the LP analysis �lter (residual

signal) is fed to the VAD to make the binary decision.

The results show that the accuracy of the VAD deci-

sions has been improved in almost all cases when we

used the LP residual instead of directly using the input

signal (see Figure 8).

5. CONCLUSIONS

We have presented in this paper an experimental com-

parative study of three VAD algorithms under di�er-

ent background noise conditions. The results show a

consistent superiority of both the EVRC and the TOS

VADs when compared with the GSM-based VADs. We

have also shown that VAD decisions were improved by

using the proposed isolated error correction mechanism

and the LP residual as the input signal to the VAD.
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Figure 1: VAD results for car noise at 20 dB SNR.
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Figure 2: VAD results for babble noise at 20 dB SNR.
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Figure 3: VAD results for car noise at 0 dB SNR.
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Figure 4: VAD results for babble noise at 0 dB SNR.
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Figure 5: VAD results for bus noise at 0 dB SNR.
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Figure 6: VAD results for street noise at 0 dB SNR.
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Figure 7: TOS VAD: e�ect of isolated error correction

mechanism.
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Figure 8: TOS VAD: e�ect of input signal.


