Algorithms for Wireless Personal Communications Comparison of Voice Activity Detection Systems

Khaled El-Maleh

Peter Kabal

McGill University
Department of Electrical Engineering

Presentation Overview

- The voice activity detection (VAD) problem
- VAD applications
- VAD design
- VAD algorithms
- Comparative study
- Improving VAD performance
- Summary of results

The Voice Activity Detection Problem

- Conversational (dialogue) speech: sequence of segments of speech and silence
- periods signal resulting in either speech-plus-noise, or noise-only Background acoustical noise contaminates the speech
- An ON-OFF model of conversational speech is given as:

$$x(k) = \begin{cases} s(k) + n(k); & \text{talk mode} \\ n(k); & \text{listen mode} \end{cases}$$

The VAD problem can take the form of a binary hypotheses testing problem:

- Null hypothesis (\mathcal{H}_0): noise-only
- Alternative hypothesis (\mathcal{H}_1) : speech-plus-noise

Fig. 1 The VAD Problem

VAD Applications

- Speech Coding
- Variable bit rate coding (i.e. QCELP, EVRC)
- Discontinuous transmission (i.e. GSM coders G.723.1)
- Digital speech interpolation (DSI)
- Speech Recognition
- Echo cancellation (hands-free telephony, audio-conferencing)
- Noise reduction systems (i.e. spectral subtraction algorithms)
- Speech synthesis

Basics of a VAD Design

Fig. 2 A General VAD Algorithm

Commonly used VAD features:

- short-time energy
- zero crossing rate
- LPC, and cepstral coefficients
- Pitch lag (periodicity)

The GSM VAD

Fig. 3 The GSM VAD Algorithm

The Improved GSM VAD

- Srinivasan and Gersho (1993) proposed an improved version of the GSM VAD
- Several new features to the basic GSM VAD design include:
- a multi-band (4 bands) energy comparison
- spectral flatness measurements
- using the fraction of the energy of the low frequency band

The EVRC VAD

Fig. 4 EVRC VAD Thresholding Mechanism

The Third-Order Statistics VAD

- Symmetrically distributed (non-skewed) processes have a zero third-order cumulant (TOC) at all lags
- Speech: skew enough to have significantly non-zero TOC at all lags
- Many real-life noises can be assumed to be Gaussian or at least symmetrically distributed
- A time domain Gaussianity test is used as the basis for the third-order statistics (TOS) VAL

The test statistic of this VAD is defined as

$$\hat{d} = \hat{c}_{3y}^t \hat{C}_0^{-1} \hat{c}_{3y}$$

- $-\hat{c}_{3y}$: TOC of a given frame
- $-C_0$: covariance matrix of the TOC estimated from R initial noise-only frames
- VAD threshold (\mathcal{T}): $\chi_Q^2(\alpha)$
- α is a pre-selected probability of false alarm (P_F)
- Q is the number of lags used in the TOC computation
- The value of the threshold is obtained from the chi-square (χ_Q^2) table

VAD Hangover Algorithms

- In VAD algorithms, a hangover (HOV) period of few frames (3–6) are used to prevent premature transition from speech to noise
- HOV algorithms are used to avoid detecting low-energy unvoiced speech as noise
- Both the GSM and the EVRC VADs use HOV algorithms
- EVRC VAD uses an adaptive hangover period based on the SNR estimate of each frame

Comparative Study

- Compare the performance of each VAD under different acoustical background noise conditions
- These conditions include different noise environments signal-to-noise (SNR) ratios (20, 10, and 0 dB) (street, car, bus, and restaurant) and at various
- Two types of VAD errors:
- detection of speech as noise (probability of miss)
- detection of noise as speech (probability of false

Fig. 5 VAD results for car noise at 20 dB SNR.

Fig. 6 VAD results for babble noise at 20 dB SNR.

Fig. 7 VAD results for car noise at 0 dB SNR.

Fig. 8 VAD results for babble noise at 0 dB SNR.

Fig. 9 VAD results for bus noise at 0 dB SNR.

Fig. 10 VAD results for street noise at 0 dB SNR.

Improving VAD Performance

- Use the linear prediction (LP) residual as the input signal to the VAD
- Isolated VAD errors result in annoying perceptual artifacts in VBR speech coders
- Isolated error correction mechanism (IECM)
- Delay the decision by 2-3 frames to monitor the VAD decisions in neighboring frames
- If the VAD decision of the current frame is different be similar to the other frames from its neighbors, then its VAD flag is changed to

Fig. 11 TOS VAD: effect of input signal.

Fig. 12 TOS VAD: effect of isolated error correction mechanism.

Fig. 13 TOS VAD: effect of isolated error correction mechanism.

Fig. 14 TOS VAD: effect of isolated error correction mechanism.

Summary of Results

- Consistent superiority of the EVRC VAD
- The TOS VAD is ranked overall second in performance with almost-perfect detection of babble noise at 0 dB
- The GSM VAD shows acceptable performance under stationary noise environments but is not good for non-stationary noises
- High-energy voiced speech segments are always detected but low-energy unvoiced speech is commonly missed
- The VAD decisions were improved by using the LP proposed IECM. residual as the input signal to the VAD and by using the

References

- [1] K. Srinivasan and A. Gersho, "Voice activity detection for cellular pp. 85–86, October 1993. networks," in Proc. of the IEEE Speech Coding Workshop.,
- [2] D. K. Freeman, G. Cosier, C.B. Southcott, and I. Boyd, "The voice pp. 369–372, Glasgow, May 1989. activity detector for the Pan-European digital cellular mobile telephone service," in *Proc. Intl. Conf. Acoust., Sp., & Sig. Proc.*,
- [3] TIA Document, PN-3292, Enhanced Variable Rate Codec, Speech January, 1996. Service Option 3 for Wideband Spread Spectrum Digital Systems.
- [4] L. R. Rabiner, and M. R. Sambur, "Voiced-unvoiced-silence detection using the Itakura LPC distance measure," in *Proc. Intl. Conf.* Acoust., Sp., & Sig. Proc., pp. 323–326, May 1977.

- [5] J. A. Haigh, and J. S. Mason, "Robust voice activity detection using cepstral features," in IEEE TENCON, pp. 321–324, China, 1993.
- [6] J. D. Hoyt, and H. Wechsler, "Detection of human speech in pp. II-237-II-240, Australia, May 1994. structured noise," in Proc. Intl. Conf. Acoust., Sp., & Sig. Proc.,
- [7] R. Tucker, "Voice activity detection using a periodicity measure," in IEE Proceedings-I, Vol. 139, No. 4, pp. 377–380, August 1992
- [8] M. Rangoussi, and G. Carayannis, "Higher order statistics based the IEEE Asilomar Conf., pp. 303-307, 1995. Gaussianity test applied to on-line speech processing," in Proc. of
- [9] H. J. M. Steeneken, and F. W. M. Geurtsen, "Description of the RSG.10 noise database," Report IZF 1988-3, TNO Institute for Perception, Soesterberg, The Netherlands