Perceptual Coding of Narrowband Audio Signals at 8 kb/s

Hossein Najafzadeh

Peter Kabal

Telecommunications & Signal Processing Laboratory McGill University

Motivations & Objectives

- Rapid growth of multimedia communications (wireless PCS & audio signals internet) requires efficient algorithms for coding and reproduction of
- Efficient use of the bandwidth requires low rate coding
- Use the masking property of the hearing system in the coding by the input signal algorithm; the distortion introduced in the coding process is masked
- Goal: develop a coding algorithm for narrowband audio inputs using 1 bit/sample with acceptable quality

Proposed Coder Overview

Fig. 1 Block diagram of the proposed coder.

- Adaptive Time to Frequency Mapping
- use an MDCT with 50% overlap between successive frames
- for blocks with no sharp transients, a frame of 240 samples (30 msec) is transformed into 120 coefficients
- to reduce pre-echo artifacts a shorter window with a length of
- a start window is used to switch from long to short windows, and a stop window switches back 10 msec is used whenever a strong transient is detected

• Window Selection

- window selection is done based on the energy-entropy criterion proposed by Sinha and Tewfik as follows
- each block of 240 samples is divided into 80 segments of 3 samples
- energy-entropy defined as:

$$I = -\sum_{i=1}^{80} \sigma_i^2 \log_2 \sigma_i^2$$

 σ_i^2 is the energy of segment i normalized by the overall frame

a value of I < 2.5 bits is used as the threshold for switching

Fig. 2 Window switching for a piece of music containing a sharp jump.

• *Masking Threshold*: calculated based on the model proposed by Johnston:

Fig. 3 Transform coefficients and masking threshold for a frame of music.

Perceptually Trained VQ

training of the codebooks is done using a perceptual distortion measure based on the energy of the unmasked noise

$$e(i) \stackrel{\triangle}{=} |X(i) - C^{(j)}(i)|^2 - M(i)$$

$$D(X, C^{(j)}) = \sum_{i=1}^{N} (|e(i)| + e(i))/2$$

$$C_{\text{opt}}^{(j)} = \arg\min_{C(j)} \sum_{k=1}^{L} D(X^{(k)}, C^{(j)})$$

use the same criterion to search for the best codeword

• Bit Assignment Scheme

- bit assignment is performed based on the distribution of the energy above the masking threshold
- for each band an experimental relation between the distortion and the quantized energy for different bits has been found as:

$$D_i = c \hat{E} 2^{-b_i/\alpha}, \quad 0.4 \le c \le 0.7, \quad 0.3 \le \alpha \le 0.5$$

number of bits assigned to each band is determined by:

$$\underset{b_{i}}{\arg\min} \sum_{i=1}^{18} D_{i}, \quad s.t. \quad \sum_{i=1}^{18} b_{i} = B$$

B is the total number of bits for each frame.

$$b_i = 5 + \alpha_i \log_2(\hat{E}_i/\hat{E}_{gm})$$

$$\hat{E}_{gm} = \left(\prod_{i=1}^{18} \hat{E}_i^{\alpha_i} \right) \left(\frac{1}{i=1} \sum_{i=1}^{18} \alpha_i \right)$$

• Predictive VQ of E's

- energy vectors E's are highly correlated \Rightarrow Predictive VQ
- -E is normalized to a unit energy vector E_n
- an estimate of the current normalized vector is obtained using the 6 previous normalized vectors:

$$\underset{c_{i} \in \mathcal{C}}{\arg\min} \sum_{j=1}^{6} (E_{n}^{(j)} - \sum_{i=1}^{6} c_{i} \hat{E}_{n}^{(j-i)})^{2}$$

$$\tilde{E}_n^{(j)} = \sum_{i=1}^{6} c_i \hat{E}_n^{(j-i)}$$

 \mathcal{C} is the predictor codebook

$$r^{(j)} = E_n^{(j)} - \tilde{E_n}^{(j)}$$

 $r^{(j)}$ is quantized using a 2 stage VQ.

$$\hat{E_n}^{(j)} = \tilde{E_n}^{(j)} + \hat{r}^{(j)}$$

Bit Allocation Table

Total	transform coefficients	EAM norm	residual	predictor coefficients	window flag
120 bits	83 bits	5 bits	22 bits	9 bits	1 bit

Total	transform coefficients	EAM norm	normalized EAM	window flag
40 bits	24 bits	5 bits	10 bits	1 bit

Table 1 Bit allocation for long and short frames

Results

- Subjective testing: proposed coder, compared with two low rate coders (ITU-T G.729 and EIA/TIA IS-96 at 8 kbit/sec), gives a have comparable performance) better quality for most audio inputs, except single speaker (all coders
- Signal to Audible Noise Ratio (SANR). Objective testing: define a perceptually based objective measure,

$$SANR = \frac{\sum_{j=1}^{L} || X^{(j)} ||^2}{\sum_{j=1}^{L} D^{(j)}}$$

File Female Vocal	Coder Proposed EIA/IS-96 ITU/G.729	SNR (dB) 13.70 11.10 6.54	SNR (dB) SEGSNR (dB) 13.70 13.73 11.10 11.62 6.54 6.79	SANR (dB) 20.75 13.60 6.62	Subjective rar 1 2 3
	Proposed	9.11	9.12	14.66	<u> </u>
Symphony Orchestra	EIA/IS-96	6.44	6.59	8.50	2
	ITU/G.729	0.18	0.77	0.66	ယ
	Proposed	10.35	9.49	14.38	జ బ
Female Speech	EIA/IS-96	7.92	6.86	9.29	≈ 2
	ITU/G.729	5.24	2.99	5.79	≥

Table 2 Objective and subjective comparison for different coders

Conclusions

- of inputs at 8 kbit/s. We have developed a transform audio coder suited for a wide range
- same rate have uneven results for non-speech signals. The proposed coder delivers acceptable quality for most audio signals while other state-of-the-art speech coders operating at the
- coding systems at a rate of 8 kb/s. This work has revealed the suitability of VQ-based perceptual