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Abstract

Two techniques based on the manimum description.
length (MDL) and the predictive stochastic complex-
ily (PSC) are proposed for sinusoidal signal detec-
tion. The MDL and PSC criteria are the codelength
of the observation and the model. The proposed tech-
niques decompose the observation vector into its com-
ponents in the signal and noise subspaces. The noise
component is encoded for several model orders. The
best model is selected by minimizing the codelength.

1 Introduction

Sinusoidal signal detection is discussed in various
fields ranging from telecommunications to array pro-
cessing and spectruin estimation. Various techniques
have been proposed in the literature for sinusoidal
signal detection and emuneration; see [1].

Here, we propose two enumeration techniques
based on the minimum descriptiou lenght (MDL) [2]
and the predictive stochastic complexity (PSC) [3]
principles. MDL and PSC estimate the model order
by minimizing the Kullback-Leibler distance between
the true model and the estimated oune.

Due to temporal coherency of sinusoids, direct ap-
plication of MDL and P3C generates erroneous re-
sults -- the nunber of signals is always detected as 1.
Here, we introduce an alternative approach, similar
to the ones presented in [4] and [5]. The proposed
technique is based on decomposing the observation
vectors into their orthogonal components in the sig-
nal and noise subspaces. Using the MDL or PSC
principle, the noise components are encoded. This
procedure is performed for all possible models and
the minimun codelength is selected to estimate the
number of sinusoids. The simulation study shows
that the PSC has a better performancce in nonsta-
tlonary environments.
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2  Problem Formulation

Consider a time series modeled as

K
xz(t) = Z o, cos{wyt + ¢r) + n(t) (1)

k=1
where the parameters 6% = (og,wr,d),k =

1,..., K, and their number K are unknown; n(l) is a
) ? Y y

Gaussian white noise with an unknown variance o?.
All unknowns can be arranged in a parameter vector

T = (v, Wi, D1, - - O, WE, Oi L 00). (2)

The observed data is sampled with the rate w, >
2max{wg } and arranged in a matrix form with cach
k

columnn representing an M x 1 snapshot vector

K
x(t) = Y alwp)s(t, ap,wi, o) +0(t)  (3)
k=1

where

1 0
cos(wy D) sin(wg D)
a(wk ) = . .

cos(wk(J\:/[ —1)D) sin(wk(ﬂ;[ —1)D)

. 27 . .
with D = — being the sampling interval, and
Ws
ay, cos(wit + o)
S(t,(lk,bdk,(z)k) = N (5>
— Sin(wkt + (/)k)

The matrix a{wy) i3 tlme-invariant it is only a
function of the frequency wy. Arrangement of all

a(we), bk =1,..., K n a matrix gives

A(Q) = [a(wy),...,alwr)] (6)
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where QF = (wi,...,wx) is the vector of all frequen-
cies of the sinusoids. Using this notation,

x(t) = A(Q5)s(1, @) + n(t) (7)

where © = (ay,wy, dy,--., 0K, wic, ¢x) is the pa-
rameter vector of sinusoids. The signal subspace is
defined as the span of A(QF). The noise subspace is
the orthogonal complement of the signal subspace.

Let X(T) = [x(t)], t =1L,...,T, be the M x T ob-
servation matrix the matrix of snapshot vectors
collected in the window (1,...,7"). Using the obser-
vation matrix X(7T), we formulate two information
theoretic methods to estimate the number of signals
K and their frequencies wy, k=1,..., K.

3 The MDL and PSC
Principles

The mangmum description length (MDL) [2] and the
predictive stochastic complexity (PSC) [3] techniques
are the codelengths used to represent data. Both
principles are based on minimizing the Kullback-
Leibler distance between the true model and the es-
tirmrated one.

The MDL criterion for a model of order k at time
instant T is

MDL(T, k) = — log f (X(T){lf(l’%) + @logT (8)

where f{X]|¥) is the conditional probability density
function, ¥k is the mazimum likelihood (ML) esti-
mate of the parameter vector % using the observa-
tions up to time 7', and v(k) is the number of freely
chosen parameters. The model order at time T is
determined from

K = mtin MDL(T, k) (9)

where the minimization is performed over all possible
models.

PSC is the codelength for a minimal description
of data; at time T and for a model of order k, it
amounts to

T

PSC(T, k) =~ log f (x(t)pilf;l) (10)

t=1

where ¥F | is the ML estimate of the parameter vec-
tor ¥* using the observations up to time (£—1). The
estimated model order at time 7' is given by

K= mljnPSC(T, k) (11)

with the minimization performed over all possible
models.

4 Signal Enumeration

In a straightforward approach, the conditional prob-
ability density of X(7') is determined and used in
(8) and (10). This approach to detection of sinu-
solds produces erroneous results - in fact the model
order is always estimated as 1. This'is due to the
temporal coherency of the signals.

I this paper, we take an alternative approach sim-
ilar to the one presented in [4] [5]. We propose de-
composing the observation vectors into their coupo-
nents in the signal and noise subspaces.

Let us represent by P, (Q%) and P, () the pro-
jection matrices onto the signal and noise subspaces,
respectively. Since the signal subspace is the column
spau of A(QF),

P,(QK) = A(QK)<AH(QK)A(QK)>_1AH(QK>A

(12)
The projection matrix onto the noise subspace is
PL(QF) =1~ P, (QF), (13)

where I is the M X M unity matrix. The observation
vector x(t) can be decomposed as

x(t) = Py(Q5)x(t) + Po(Q)x(1).  (14)

The M x 1 vector P (Q)x(t) is in the 2K-
dimensional signal subspace. Similarly, P, (Q5)x(#)
is in the (M — 2K)-dimensional noise subspace.

The formulation (14) reveals an interesting prop-
erty. The information about the parameter vector
QK and hence the dimensionality of the signal and
noise subspaces, is contained in both P, (Q%)x(1)
and P, (Q)x(t) vectors. One might then be able
to use only one of these vectors to estimate the nuin-
ber of signals. In the sequel, we propose two tech-
niques based on applying the information theoretic
techniques to the noise vector only.

Let x,(t) be the projection of the observation vec-
tor x(t) onto the noise subspace, i.e.,

x5, (t) = P (QF)x(4). (15)
If QF is the true parameter vector, x,(t) is a zero-

mean white Gaussiau noise vector. The probability
density function of x,(¢) is then

Foen(BI0F,0%) = o1 exp{ — Sslla 0]}
(16)
where I'is a (M — 2K) x (M — 2K) unity matrix.
Define X,,(T) = [xn{1)], t = 1,...,T, the projection
of the observation matrix onto the noise subspace.
The probability density function for X,,(T) is

FXa(DIO 02 =lmo T~ exp{ —r{Po(0 )R]}
17)

—
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where tr[.] is the trace operator and

1 T
R, = 5 > x(tx" (1) (18)

t=1
is the sample correlation matrix of the observation
vector. Let us define
R, (%) = P, (Q")R.. (19)
The log-likelihood function for X,,(T') is then

~log f(X(T)|Q, 0?) T(M - 2K)log(o?n)

RO, (20)

As discussed earlier, the ML estimate of the pa-
rameter vector is used in MDL and PSC. Using the
results of [6], the ML estimate of the noise power is
given by

5= GR,(0F)). (21)
M -2K "

The log-likelihood function is then

RN AKN—T (AT — 97F o th'{Rn(QK)]
log f(X(T)|Q)=T(M - 2K) 1%( o )

+7T'(M - 2K). (22)

where % is the ML estimate of the parameter vector

Q. Note that the number of freely chosen parame-

ters is K. The MDL criterion for a model of & signals

is then

N o ratnRa ()]
MDL(T, ) = 701 ~ 20 (RGN
+k;(% log T - 2T) (23)

where the constant values have not been considered
in the MDL computatiouns.

The PSC criterion is computed for all ¢ inside the
window [0,T]. Define the sample correlation matrix
at time instant £ by

R = Z (i)t (7). (24)

The projection of this matrix onto the noise subspace
for the true model is defined as

Rm (07{() = Pvrr(QtK>szPn(QtK)7 (25)

where Q€ is the ML estimate of parameter vector
for true model using the observations upto time #.
Using the results of [6], the noise power is esti-
mated as
9 1

A2 D AL
o= - QKVM R, (S42 )] (26)

Thus the PSC criterion for a model of order k is
PSC(T, k) = (M — 2k) XTj1 -(“'[R“f' (Qf—lﬂ)
= VLSBT k)

(27)

For each criterion, an estimate of K ig obtained by

minimizing the PSC or MDL value over all &k < M /2.

5 Simulation Results

We include here the results for the simulation study.
To reduce the computational complexity, we choose
to use a root MUSIC technique to estimate .

Example 1: We study a scenario with two sinusoids
with the parameters: {a; = 2,w; = 110,¢; = 1,
and {ay = 1,wy =160, ¢ = —F}. The sampling in-
terval is 1 ms. The data were collected over 1 secowd
and decomposed into 100 non-overlapping snapshots
of length 10 samples each. The case was simulated
for 100 independent trials. Table 1 compares the
PSC and the MDL techniques based on the number
of times that each method resolves the two signals as
the noise power varies from —15 dB to 5 dB.

Example 2: We simulate a casc in which the
phase of the second signal suddenly changes to “’T”
at ¢ = 570 ms. The signals are such as in Example
1. The PSC criterion is illustrated in Fig. 1. Note
that PSC depicts a break point at the location of the
change. As a comparison the MDL criterion is shown
in Fig. 2. As seen MDL has a jump at the change
point location which might cause a wrong order de-
tection. Fig. 3 illustrates the difference between the
PSC terms. At t = 3570 we notice an impluse in
the PSC criterion which indicates that the statistics
of the model has been changed. Thus, PSC can be
used for change-point detection. MDL does not see
this change — it is ouly calculated at the end of the
observation window.

Example 3: In this example, the frequency of the
second source is time-varying with a rate of 4 Hy
per second. MDL and PSC are computed at each
time instant. Note that usually MDL is not used
as simulated here - we use it so as to compare the
techniques based on their behavior to source drift.
The results of model selection have been reported
in Fig. 4. PSC breaks down much later than MDL.

- This is due to adaptive nature of PSC. In fact, at

each time ¢, PSC adds a new term to the PSC crite-
rion computed at the previous time instant for each
model. This might compensate for the drift in the
frequency. On the contrary, MDL uses all data upto
time f and assumes that the characteristics of the
sources are stationary.

These two examples show that the PSC algorithm
is more appropriate for a nonstationary environmnent.
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Noise Selected Model
Power PSC MDL
(dB) 1 2 3 |1 2 3 3
—15 0 100 010 100 0 e 7 !
—10 0 100 010 92 8 T \
-5 0 100 010 0 100 sof | ‘ | s
0 0 22 7840 0 100 1000 ;
5 0 0 1000 0 100 [
!
-2000}- N "I
Table 1: The resolution of the two methods PSC and : i 1\
MDL' 2500§ k=2 :
[ N - —— 5" To1 oz o8 04 TunZ}isc) 07 o8 08 1
:::} - i Figure 2: The MDL criterion when the phase of the
o first signal varies at ¢ = 570 ms.
k=3
o5 ) PSG(T+1,2)-PSC(T,2)
4500; a8k (\ \\7‘\Q‘\.
ST O e TS e o o |
45}
Figure 1: The PSC criterion when the phase of the 50
first signal varies at ¢ = 570 ms. sl
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