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Abstract

The poor modeling of the pitch pulse waveforms during
voiced speech contributes to the degradation of CELP
coded speech. This problem becomes more acute with the
reduction of the number of pulses and other constraints im-
posed on the fixed codebook part of the excitation. We have
developed a Pitch Pulse Averaging (PPA) algorithm to en-
hance the periodicity of such segments, where during steady
state voicing the pitch pulse waveforms in the excitation sig-
nal evolve slowly in time. The PPA algorithm extracts a
number of such pitch pulse waveforms from the past excita-
tion, aligns them, and then averages them to produce a new
pitch pulse waveform with reduced quantization noise. We
have simulated and tested our algorithm on a floating point
C-simulation of the G.729 8 kbps CS-ACELP coder. The
results we present verify that the algorithm has generally
improved the periodicity of voiced segments by reducing the
average of the weighted mean-squared error.

1 Introduction

In Code-Excited Linear Prediction (CELP) [1] coders the
excitation signal is constructed by a linear combination of
an adaptive codebook and a fixed codebook contribution [2]
which model the periodic and noisy (or stochastic) part of
the excitation, respectively. In simple terms, the excitation
signal r̂[n] for a given subframe of length N is given as

r̂[n] = βr̂[n − d] + Gc[n], n = 0, . . . , N − 1, (1)

where r̂[n − d] and c[n] are the adaptive and fixed code-
book signals. The constants β and G are their respective
gain factors. The adaptive and fixed codebook are searched
sequentially to select the codebook entries and scaling fac-
tors that minimize the weighted mean-squared difference
between the original and synthesized signal. Finally, the
resulting optimal excitation, is expressed in vector notation
as

r̂opt = βopt�opt + Goptcopt . (2)

During steady state voiced speech, the adaptive code-
book contributes a large fraction to the resulting excita-
tion. The purpose of the fixed excitation is to provide
the missing part. However, the need for lower bit-rates
reduces the number of bits available, thus restricting the
fixed codebook to smaller sizes. This results in less accu-
rate waveform matching. It is possible that the selected

fixed codebook vector will disturb the periodicity of the re-
sulting excitation signal, or alternatively increase the quan-
tization noise. After the selection of the two contributions,
the “noisy” resulting optimal excitation is fed back to the
adaptive codebook. As a result, the adaptive codebook is
populated with a “noisy” residual and no longer provides
the intended purely periodic signal.

Our approach [3] is focused on the adaptive codebook
contribution. Based on observations on which the principles
of Waveform Interpolation [4] and Pitch Pulse Evolution
model reported in [5] are based, we concluded that during
steady state voicing, the adaptive codebook should supply
a pitch waveform, whose shape changes slowly from pulse to
pulse. Thus the abrupt changes that the pitch pulse in the
adaptive codebook contribution may undergo, have to be
removed before is added to the fixed codebook contribution
to form the resulting excitation. This can be achieved by
allowing the adaptive codebook to be populated the usual
way, and remove the quantization noise from the current
optimal codevector based on a relatively long history of
pitch pulses.

2 The Pitch Pulse Averaging Technique

In practice, the adaptive codebook is specified as an array
of samples, of length at least as large as Dmax +N . The first
Dmax samples represent past constructed optimal excitation
and the next N samples represent the excitation for the
current subframe, as illustrated in Fig. 1. Setting the length

NDmax

r̂[n]

Fig. 1 Adaptive codebook state before excitation selection.

of the past excitation to the longest possible pitch period
Dmax , implies that the past excitation contains at least one
pitch pulse waveform. In our approach, the past excitation
is extended to contain a number of pitch pulse waveforms,
even for the case of having a signal with pitch period as
long as Dmax . The PPA technique can be divided into
two steps. First, the evolution of the current pitch pulse
waveform is extracted from the relatively long excitation
history and second, the noisy component is removed from
the current waveform by averaging its evolution.
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2.1 Extraction of pitch pulses

The evolution of the pitch pulses is found by identifying
and extracting the best match to the target vector of the
current subframe, then in a similar way find the match to
the first match and so on. Here, a match to an arbitrary
time instant is defined as the sample from the past that was
selected to minimize the weighted mean-squared error of
the synthesized speech at that time instant. This sample is
identified by the optimal delay found for that time instant.
By identifying the subframe that each time instant belongs
to, we could assign an optimal delay to each one of them.
This information could then be used to extract the aligned
consecutive pitch pulse waveforms and form the pitch pulse
evolution.

For example, the simplest case would be to identify the
best match to the current subframe, i.e., at time instants
n = 0, . . . , N − 1, when the delay is greater than the sub-
frame length. All the time instants in this period are as-
signed the same delay D(0), thus their matched samples are
found D(0) samples back. Thus, the best match for time
instant n = q, q = 0, . . . , N − 1 is sample r̂[q −D(0)]. This
can also be written as

S0[n] = r̂[n − D(0)], for n = 0, . . . , N − 1, (3)

where D(0) is the optimal integer delay found for the cur-
rent subframe, after a closed loop search of the adaptive
codebook, and S0[n] is the first extracted waveform. In
order to find the second waveform, the match to the time
instants that constitute the first match, i.e. time instants
n = q − D(0), q = 0, . . . , N − 1, have to be identified.
Here, there might be a case where different time instants
are assigned with different delays because they belong into
different subframes. Once the subframe(s) that those time
instants belong to are identified, their matches can be found
by using their assigned delays.

Depth-First search procedure using integer delay values

The approach for extracting the pitch pulse waveforms in-
troduced above uses a breadth-first search procedure, where
all the elements of one waveform are extracted before mov-
ing to the next waveform. This makes this approach rather
complex to implement. An alternative approach is to use a
depth-first search procedure, where all the elements having
the same index n in each waveform i are extracted before
advancing the index to the next element. The pitch pulse
waveforms Si[n] are now given as:

Si[n] = r̂[n − P (i)], for i = 0, . . . , L, (4)

and n = 0, . . . , N − 1,

where

P (i) = P (i − 1) + D(k), with P (0) = D(0), (5)

and

k =

8><
>:

0 if (−P (i − 1) + n) > −1,�
P (i − 1) − n − 1

N

�
+ 1 otherwise.

(6)

In Eq. (5), D(k) denotes the optimal delay found for the k-
th past subframe. The integer L denotes the total number
of waveforms extracted. This approach is shown in Fig. 2
for the first and last elements of the first three waveforms
in the previous example.

r̂[0]

S0

S1

S2

Fig. 2 Pitch pulse waveform extraction using a depth-first
search procedure. Assumed values: N = 8, D(k) =
11, 10, 12, 12, for k = 0, 1, 2 and 3, respectively.

So far we have assumed that the delay at the current
subframe is greater than the subframe length. When the
optimal delay found for the current subframe is smaller than
the subframe length, N−D(0) samples need to be read from
the current subframe in order to completely define the first
pitch pulse waveform S0 (see Eq. (4)). Unfortunately, the
excitation at the current subframe is still unknown and thus
those samples are not defined. To remedy this problem, we
let the G.729 algorithm [6] first form the optimal adaptive
codebook vector and then copy this vector to the current
subframe. This approach was chosen for its practicality and
it was found through simulations that it gives similar results
as if the waveform was simply repeated for the undefined
samples.

Depth-First search procedure using fractional delay values

The depth-first search procedure described earlier, employs
integer delays to extract the pitch pulses. Better match-
ing can be achieved if delays of higher resolution are used.
Thus, the procedure described above has been modified to
operate with fractional delays. The introduction of frac-
tional delays can be done either by using polyphase filters
or by interpolating the excitation buffer. Since the first
method is rather cumbersome to implement and requires a
large amount of computation the latter was preferred.

Fractional delays of resolution I can be implemented by
interpolating the excitation buffer by a factor I . Thus, a
fractional delay expressed as an integer delay T and a frac-
tion t/I , t = 0, 1, . . . , I − 1, in the original excitation, is
equivalent to an integer delay of IT + t samples in the in-
terpolated excitation. Following this principle, the pitch
pulse waveforms are now given as
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Si[n] = r̂int [−P (i) + nI ], for i = 0, . . . , L, (7)

and n = 0, . . . , N − 1,

where

P (0) = IT (0) + t(0),

P (i) = P (i − 1) + (IT (k) + t(k)), (8)

and

k =

8><
>:

0 if (−P (i − 1) + In) ≥ 0,�
P (i − 1) − In − 1

IN

�
+ 1 otherwise.

(9)

In Eq. (7), r̂int denotes a pointer to the beginning of the in-
terpolated current subframe in the interpolated excitation;
that is, to the sample point in the interpolated excitation
that corresponds to the first sample of the current subframe
in the original excitation. The integer and fractional part
of the delay in the k-th subframe are denoted as T (k) and
t(k) respectively.

Figures 3(a) and 3(b) show a voiced segment of the ex-
citation corresponding to a female spoken utterance and
the extracted waveforms at the indicated subframe respec-
tively. During unvoiced segments of speech, the extracted
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Fig. 3 Extraction of waveforms during voiced segments.

waveforms are more noise-like since pitch periodicity is ab-
sent. This case is demonstrated in Figures 4(a)and 4(b).

After the waveforms have been extracted, they are nor-
malized in energy so that the pitch pulses in these wave-
forms have more uniform amplitudes and thus the weight-
ing applied to each extracted waveform during the averaging
procedure is more effective.

2.2 Averaging of pitch pulses

After the pitch pulse waveforms have been extracted and
normalized, the noisy component can be removed from the
intended adaptive codebook vector by averaging these wave-
forms. The adaptive codebook vector found for the current
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Fig. 4 Extraction of waveforms during unvoiced segments.

subframe, resembles very closely the first pitch pulse wave-
form extracted. This is the most recent waveform in the
evolution of the pitch pulses and thus should be empha-
sized most. As the waveforms age in time, their relevance
decreases and therefore they should be given less emphasis.
Since it is very important that we are be able to control
the number of waveforms that are emphasized most, the
weighting function is required to have a varying shape. This
requirement led us to the choice of a Kaiser window. In con-
tinuous time, a Kaiser window is specified by the following
equation:

w(t) =

8><
>:

I0(α
p

(1 − t2))

I0(α)
for −1 ≤ t ≤ 1,

0 otherwise,

(10)

The discrete-time one-sided window of length Nw is ob-
tained by setting

t =
n

(Nw − 1)
, for n = 0, . . . , Nw − 1, (11)

which provides the weights for the Nw extracted waveforms.
The independent window parameter α determines the shape
of the window and its value is estimated empirically. The
value of α not only affects the averaged adaptive codebook
vector but the population of the adaptive codebook as well,
since this vector is replacing the optimum adaptive code-
book vector originally estimated by the original algorithm
of the coder.

The normalized pitch pulse waveforms S̄i are now
weighted with their corresponding weights w[i] and added
together to form the averaged waveform �av , given as

�av =

Nw−1X
i=0

w[i]S̄i. (12)

Before forming the new adaptive codebook vector for the
current subframe, the gain difference between the averaged
waveform �av and the one intended to be supplied by the
original coder, �opt , has to be compensated. Note, for the
purposes of this paper, the term “original coder” refers to
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the unmodified coder. Since the extracted waveforms are
not orthogonal, normalization of the energy of the weights
does not solve the problem. A simple way to compensate
for this difference is to multiply the averaged waveform with
a gain-scaling factor given as

g =

vuuuuuuuut

N−1X
i=0

υ2
opt [n]

N−1X
i=0

υ2
av [n]

. (13)

The gain-scaled averaged waveform �̃av is given by

�̃av = g�av . (14)

Finally, the vector �̃av replaces the originally estimated op-
timal adaptive codebook vector �opt and is subsequently
used to calculate the gain βopt and form the adaptive code-
book contribution for the current subframe.

The block diagram of Fig. 2.2 indicates how the origi-
nal codec structure has been modified to accomodate our
algorithm.
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(b) Decoder structure.

Fig. 5 Modified codec structure.

3 Simulation results

The performance of the algorithm was measured using a
number of objective measures, such as the cross correlation
coefficient between the filtered adaptive codebook vector
(zero-state response of the weighted synthesis filter h[n] to

υopt[n]) and target vector, and the variations of the fixed
codebook gain. Since these two objective measures are not
very well correlated, i.e., an increase in the correlation co-
efficient does not always result in a decrease in the fixed
codebook gain, more emphasis is given to minimizing the
weighted mean-squared error between the synthesized and
weighted input speech vectors.

Simulations indicate that the weighted MSE improves
during steady-state voicing but not during onsets and end
of voicing segments. The algorithm does best during steady
state voiced speech because the similarity between succes-
sive waveforms is higher during such segments. Any con-
tribution from the fixed codebook which disturbs the pe-
riodicity of such segments by inserting pulses of unwanted
amplitudes to unnecessary positions, is reduced by the aver-
aging procedure. The best value of α during these segments
is low, which implies that the fixed codebook is introduc-
ing unwanted noise to the final excitation waveform and
there is more need to remove it by the averaging procedure.
The situation is reversed during the onsets. In this case
the algorithm hinders the attempt of the coder to compen-
sate for the increasing amplitude pitch pulses and ringing at
the same time, while having only 4 pulses available for the
fixed codevector. Similarly, during unvoiced segments the
adaptive codebook essentially acts as a second stochastic
codebook, helping the fixed codebook compensate for the
highly noisy character of such segments. The averaging of
such segments, reduces the noisy character of the adaptive
codebook, thus leaving more work to the fixed codebook.
Thus for such segments the value of α is high and the over-
all performance of the algorithm drops below that of the
original coder.

The performance of the algorithm during these segments
is illustrated in Fig. 6 where the weighted mean squared
error is plotted for the original codebook and that modified
by the PPA algorithm. During steady state the weighted
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Fig. 6 Weighted Mean Squared Error for a voiced segment.

MSE is lower for the majority of subframes, but this is
not always the case during the onset and end of the voiced
segment. Nevertheless, the average weighted MSE of the
segment shown is lower than the original.
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The problem of poorer performance during the onsets and
unvoiced segments has been reduced by introducing a sim-
ple mechanism to activate the algorithm only during voiced
segments, skipping the first few pitch pulses at the onsets.
The problem at the ends of voiced segments has not been
solved though, since there was no simple and efficient way to
detect such segments. Nevertheless the overall performance
of the algorithm has improved.

4 Conclusions

In this paper we presented the design and simulation of the
Pitch Pulse Averaging (PPA) technique whose goal is to re-
duce the noise in the pitch pulse waveforms supplied by the
adaptive codebook during steady state voiced speech seg-
ments. Objective tests verified that the algorithm does best
during steady state voiced speech because of the similarity
between successive waveforms in such segments.

Better results could be obtained by switching between the
PPA technique and the original coder depending on which
of the two performs best at each subframe. Using a simple
decision mechanism, the cost in terms of complexity would
be nearly the same as if the algorithm was continuously
active. But an extra bit per subframe should be transmitted
to inform the decoder which case should be used at each
subframe to be synthesized. For a 5 ms subframe and an
8 kHz input sampled speech, such a scheme would increase
the coding rate by 200 bps. The next generation low bit-rate
coders will operate at even lower bit-rates, that is at 4 kbps
and below. At such rates it will be harder to achieve high
quality. Our PPA technique along with a jointly optimized
fixed codebook may be the key to providing the desired
speech quality.
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