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Abstract

Background environmental noises degrade the performance of speech-processing systems (e.g.
speech coding, speech recognition). By modifying the processing according to the type of back-
ground noise, the performance can be enhanced. This requires noise classification. In this work, four
pattern-recognition frameworks have been used to design noise classification algorithms. Classifi-
cation is done on a frame-by-frame basis (e.g. once every 20 ms). Five commonly encountered
noises in mobile telephony (i.e. car, street, babble, factory, and bus) have been considered in our
study. Our experimental results show that the Line Spectral Frequencies (LSFs), derived from the
linear prediction coefficients, are robust features in distinguishing different classes of noises.

1. Introduction

In daily life, we encounter different types and levels of background acoustical noises (e.g. traffic
noise, car noise, office noise etc.). Speech-processing systems (e.g. speech coding, speech recogni-
tion, speaker verification) pick up those “unwanted” signals along with speech. These noise signals
result in performance degradation of those systems. For example, the accuracy of a speech recogni-
tion device might severely be affected if the level of noise is high and there is a mismatch between
training and operation conditions [1]. In speech coding, background noises can be coded with
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annoying artifacts [2]. Noise classification can be used to reduce the effect of environmental noises
on speech processing tasks. As an example, in variable bit rate speech coders, the lowest rate is used
to encode background noises in non-active speech periods. As environmental noises vary in texture
and dynamics, using a simple coding scheme has proven to be not adequate for many common types
of noises. Noise classification can be used to design natural-quality multi-mode noise coding algo-
rithms. Similarly, multi-mode comfort noise generators can be designed to remedy the noise con-
trast problem reported in discontinuous transmission-based cellular systems (i.e. GSM). A fuzzy-
logic noise classifier was proposed in [3], as part of an object-oriented audio coder proposal to the
MPEG-4. Recognition of the noise type was used in [4] to design a noise-independent speech rec-
ognition system.

Noise classification has been used in other applications. For example, in programmable hearing-aid
devices, a classification algorithm automatically can match a program mode with the listening envi-
ronment of the user [5]. In noise monitoring systems, classification of environmental noises can be
done to help in controlling noise pollution [6].

In this report we present the results of our work in designing noise classification algorithms to be
used as part of speech-processing systems in mobile environments.

The report is organized in five parts. Section 2 discusses the feature extraction module and the clas-
sification algorithms that have been used for our study. In Section 3, we review the performance
evaluation tools we have used. Classification results from different tests of the classification algo-
rithms are given in Section 4. Finally conclusions are presented in Section 5.

2. Frame-Level Noise Classification

2.1 Feature Extraction

The choice of signal features is usually based ona priori knowledge of the nature of the signals to be
classified. Features that capture the temporal and spectral structure of the input signal are used. Ex-
amples of such features are zero crossing rate, root-mean-square energy, critical bands energies, and
correlation coefficients. The classifier operates on a frame-by-frame basis using short segments of
the signal, e.g. 20 ms.

Linear Prediction (LP) analysis is a major part of many modern speech-processing systems. Trans-
formations of linear prediction coefficients (LPC) (e.g. cepstral, log-area ratio coefficients, line
spectral frequencies) have been used successfully in many pattern-recognition problems (e.g. speech
recognition, speaker recognition) [7].

We have experimented with different sets of features derived from both the LP coefficients and the
LP residual (e.g. residual critical band energies, zero crossing rates). The line spectral frequencies
(LSFs) gave the best class separability for the noises we considered. Moreover, a Gaussian fit to
each LSF histogram was found to be quite good. Thus, we have selected the LSFs as our features for
noise classification.

A 10th order LP analysis is performed every 20 ms using the autocorrelation method. A Hamming
window of length 240 samples is used. The LP coefficients are calculated using the Levinson-
Durbin algorithm and then bandwidth expanded using a factorη= 0.994. The LP coefficients are then
converted to the LSF domain.
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2.2 Classification Algorithms

Four pattern-recognition techniques have been chosen for our noise classification problem: Quad-
ratic Gaussian Classifier (QGC), Least-Square Linear Classifier (LS-LC) [8], Nearest-Neighbor
Classifier (NNC) [9], and Learning Vector Quantization (LVQ) [10]. A brief description of these
classification algorithms is presented below.

A Gaussian classifier is based on the assumption that feature vectors of each class obey a multivari-
ate Gaussian distribution. Estimates of the parameters of the Gaussian PDF of each class (mean and
covariance) using the labelled training data are computed. In the classification stage, an input vector
is mapped to the class with the largest likelihood. In linear classifiers, a linear discriminant function
is optimized to maximize class separability. Least-square optimization algorithm is used to compute
the coefficients (weights) of the linear function.

In nearest neighbor-type classifiers, for each input feature vector, a search is done to find the label of
the vector in the dictionary of stored training vectors with the minimum distance. Euclidean dis-
tance is commonly used as the metric to measure neighborhood. Ink-NN decision rule, the input
feature vector is assigned the label most frequently represented among thek nearest patterns in the
training dictionary. One major disadvantage of NN classifiers is the need to store large number of
training vectors resulting in a large amount of computations. As a remedy to this problem, only
prototype vectors from the training data are computed and stored (prototype nearest-neighbor classi-
fier).

Learning vector quantization is an example of prototype nearest-neighbor classification. A set ofL
vectors (prototypes) is selected from the labelled training data to minimize the misclassification er-
rors using nearest-neighbor decision rule. An initial set ofL vectors is chosen from the training set.
An iterative update rule is used to modify the vectors in such a way that achieves a better classifica-
tion of the training set by the 1-NN rule based on the selected vectors. The final set of theL vectors
defines the LVQ codebook to be used in the testing mode. The size of the codebook (L) and the dis-
tribution of the vectors amongst the classes are two free parameters to choose in the design process.
For more details about LVQ-based classification see the excellent book by Kohonen [10].

3. Performance Evaluation

Five commonly encountered noise types were considered: car, voice babble, street, bus, and factory.
A total of 56,250 frames (18.75 minutes), equally distributed between the 5 classes, were used for
training. We have recorded street noise (traffic noise, pedestrians walking and talking, and noise
from a nearby work area) and bus noise (background music, background speech, bus engine noise,
and other external transient noises such as passing cars). The other noises are from the NOISEX-92
database [1]. We have used theTooldiag pattern recognition software developed by Rauber [12] in
designing and testing the QGC, LS-LC, and thek-NN classifiers. To design our LVQ-based classi-
fier, we used theLVQ_PAK software package (version 3.1) developed by Kohonenet al. [11]. A
codebook of size 256 vectors, equally distributed among the 5 noise classes, has been designed using
both the OLVQ1 and the LVQ1 Algorithms [10].
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To measure the discriminating power of the LSFs as features, we estimated the Bayes error rate. A
lower bound on the Bayes error rateBayesP is a function of the asymptotic error rate of the nearest-

neighbor decision rule NNP [9], given as
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whereM is the number of classes.

This lower bound will be used as our reference point for the performance evaluation of the different
designed classifiers. For each classification algorithm, we used a cross-validation testing methodol-
ogy to evaluate the classification performance. Of the labelled frames, 30% selected at random were
used as test vectors while the remaining vectors were used for classifier training. Five iterations of
the Hold-out cross-validation method [8] were used to compute the empirical error rate for each
classifier.

4. Classification Results

In some speech-processing tasks, we need to discriminate speech from noise. For example, a voice
activity detection is used in some wireless communications systems to enhance systems capacity and
prolong the battery life of portable units [13]. Thus, in this work we have considered two cases:
noise-only classification (5 noise classes), and noise-and-speech classification (5 noise classes and
speech class). A total of 750,000 frames, equally distributed between the 5 noise classes and
speech, have been used for training in the noise-and-speech case. The classification algorithms were
tested using 500 frames (different from the training data) for each class, and with other new noises.

4.1 Noise-only Classification

Table 1 gives the empirical error rate evaluated with the hold-out procedure for the various classifi-
ers. Using Eq.(1) and the empirical error rate of the 1-NN classifier (19.8%), the Bayes error rate
was estimated at 10.6%. This means that independent of the classifier structure, the best frame-level
classification accuracy for the 5 selected noises (car, street, babble, bus, and factory), and with the 10
LSFs as features is around 87%. From Table 1, the quadratic Gaussian classifier (QGC) outperforms
the other classifiers with 13.6% error rate. The linear and the nearest-neighbor classifiers are less
accurate. For the remainder of the report, we will present results from the Gaussian classifier and
compare its performance with the LVQ classifer, as an example of nearest neighbor classifiers.
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Classifier Error Rate

%

Optimal Bayes 10.6

Quadratic Gaussian 13.6

3-Nearest Neighbor 17.5

Learning Vector Quantiziation 19.2

1-Nearest Neighbor 19.8

Linear (least-squares method) 21.9

Table 1 Empirical error rate for the different classifiers (noise-only)

A detailed presentation of the classification results for each class is given in the form of a classifica-
tion matrix. Tables 2 and 3 show that the classification accuracy is different for each class. For ex-
ample, accuracy ranging from 90–100% were obtained for car noise and factory noise. Street, bab-
ble, and bus noises are more often misclassified with error rates ranging from 20–40%. The Gaus-
sian classifier is more robust to new test vectors than the LVQ classifier. This is mainly due to the
parametric nature of the QGC and its ability to model well the LSFs feature vectors.

Babble

%

Car

%

Bus

%

Factory

%

Street

%

Babble 79.8 0.0 12.8 2.0 5.4

Car 0.0 99.6 0.2 0.2 0.0

Bus 8.8 0.0 85.2 2.2 3.8

Factory 1.0 0.0 5.6 93.2 0.2

Street 1.8 0.0 24.8 2.0 71.4

Table 2 Classification matrix (QGC) (noise-only)
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Babble

%

Car

%

Bus

%

Factory

%

Street

%

Babble 73.8 0.2 11.2 5.8 9.0

Car 0.0 100.0 0.0 0.0 0.0

Bus 7.8 0.0 77.2 8.6 6.4

Factory 1.4 0.0 6.2 92.0 0.4

Street 3.8 0.0 32.0 2.8 61.4

Table 3 Classification matrix (LVQ) (noise-only)

4.2 Classification of New Noises

In practical applications of noise classification, the input noise signals are not constrained to belong
to one of the 5 pre-selected noise classes. Thus, a “good” noise classifier should have the ability to
map an input feature vector from a new noise class to the closest pre-selected classes. We have
tested the QGC on 5 new noise signals (restaurant, shopping mall, sports, subway, and traffic). The
results are presented in Table 4. It is interesting to observe that the Gaussian classifier maps the new
noises to the noise classes with the same noise events. As an example, a restaurant noise is com-
posed of simultaneous conversations (babble noise), background music, and other ambient noises.
Thus, restaurant noise was classified 82.4% as babble noise and 10.8% as bus noise (which has bab-
ble, and background music components).

Babble

%

Car

%

Bus

%

Factory

%

Street

%

Resturant 82.4 0.0 10.8 4.0 2.8

Shop. Mall 52.4 0.0 2.4 0.0 45.2

Sports 22.8 0.0 6.2 0.0 71.0

Subway 53.0 0.0 21.0 4.0 22.0

Traffic 2.7 0.0 15.2 0.0 82.1

Table 4 Classification of new noises (QGC) (noise-only)
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4.3 Noise-and-Speech Classification

In Tables 5–7, we present the classification results for the noise-and-speech case. Similar results to
the noise-only case were obtained for the noises. The QGC outperforms the LVQ classifier in classi-
fying speech, with more than 30% difference in accuracy. Speech signal is 91% accurately discrimi-
nated from the noises using the QGC. This suggests that the QGC classifier using LSFs as the fea-
tures provides robust voice activity detection at the frame level.

Classifier Error Rate

%

Optimal Bayes 10.1

Quadratic Gaussian 13.6

3-Nearest Neighbor 16.2

1-Nearest Neighbor 18.9

Learning Vector Quantiziation 20.9

Linear (least-squares method) 33.8

Table 5 Empirical error rate for the different classifiers (noise-and-speech)

Speech

%

Babble

%

Car

%

Bus

%

Factory

%

Street

%

Speech 91.0 7.4 0.0 0.8 0.2 0.6

Babble 4.2 76.0 0.0 12.4 2.0 5.4

Car 0.2 0.0 99.6 0.2 0.0 0.0

Bus 2.4 8.0 0.0 84.0 2.2 3.4

Factory 0.2 1.0 0.0 5.6 93.0 0.2

Street 0.2 1.8 0.0 24.6 2.0 71.4

Table 6 Classification matrix (QGC) (noise-and-speech)
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Speech

%

Babble

%

Car

%

Bus

%

Factory

%

Street

%

Speech 57.0 30.0 2.2 4.2 1.8 4.8

Babble 0.2 76.4 0.0 8.6 3.8 11.0

Car 0.2 0.0 99.8 0.0 0.0 0.0

Bus 0.4 7.6 0.0 78.0 7.2 6.8

Factory 0.0 1.8 0.0 2.0 96.0 0.2

Street 0.0 3.0 0.0 26.0 3.6 67.4

Table 7 Classification matrix (LVQ) (noise-and-speech)

4.4 Classification of Human Speech-Like Noise

Human speech-like noise (HSLN) is a kind of babble noise generated by superimposing independent
speech signals. HSLN of various number of superpositions (N) (1, 2, 4, …, 1024, 4096) were used
in [14] to investigate perceptual discrimination of speech from noise. For example, for low number
of superpositions (below 10), the resulting signal is perceived as speech-like. ForN between 10 and
200 superpositions, the noise is perceived as babble-like. AsN increases further, the noise starts to
sound like stationary Gaussian-like noise (Central Limit Theorem). We have used this set of signals
(150 frames each) to test our classifiers. The frame-level classification results are shown in Table 8
for the noise-only case and in Table 9 for the noise-and-speech case. For the noise-only case, the
HSLN signals were classified as babble noise most of the time or as bus noise (note that bus noise
has babble as one of its noise events). However, for the noise-and-speech case, the results are more
interesting. For example, forN=1, the signal is classified as speech (86.8%) and as babble (9.3%).
On the other hand, for 128 superpositions, the HSLN signal is classified as babble noise (88.7%) and
as speech (5.3%). AsN increases, the HSLN signal is classified more as babble than speech. These
classification results clearly illustrate the robustness of the Gaussian classifier.
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N Car

%

Factory

%

Street

%

Bus

%

Babble

%

1 0.7 6.6 0.0 0.7 92.0

4 0.0 0.0 0.7 4.6 94.7

8 0.0 0.0 3.3 11.3 85.4

16 0.0 0.0 3.3 7.3 89.4

32 0.0 0.0 2.0 4.0 94.0

128 0.0 0.0 0.7 5.3 94.0

512 0.0 0.0 3.3 8.0 88.7

1024 0.0 0.0 5.3 3.3 91.4

4096 0.0 0.0 4.6 10.6 84.8

Table 8 Classification of HSLN signals (QGC) (noise-only)

N Speech

%

Car

%

Factory

%

Street

%

Bus

%

Babble

%

1 86.8 0.7 3.4 0.0 0.0 9.3

4 81.5 0.0 0.0 0.7 1.3 16.6

8 72.9 0.0 0.0 3.3 5.9 17.9

16 51.0 0.0 0.0 3.3 4.0 41.7

32 29.8 0.0 0.0 2.0 3.3 64.9

128 5.3 0.0 0.0 0.7 5.3 88.7

512 0.7 0.0 0.0 3.3 8.0 88.0

1024 1.3 0.0 0.0 5.3 3.3 90.1

4096 0.7 0.0 0.0 4.6 10.6 84.1

Table 9 Classification of HSLN signals (QGC) (noise-and-speech)
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5. Conclusion

Frame-level noise classification results have been presented using four pattern-recognition frame-
works. The line spectral frequencies have been used as the features. The quadratic Gaussian classi-
fier (QGC) outperforms the other classifiers tested. The classification accuracy is different for each
class, with accuracy ranging from 90–100% for car and factory noise, and with error rates ranging
from 20–40% for street, babble, and bus noise. Speech signal is 91% accurately discriminated from
the noises using the QGC. This suggests that the QGC classifier using LSFs as the features provides
robust voice activity detection at the frame level. The accuracy can be improved substantially by
postprocessing the temporal sequence of decisions (for instance with a Viterbi type algorithm), how-
ever this comes at the expense of further delay.
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