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Abstract

This paper discusses the interpolation of linear prediction
(LP) coefficients. The performance of LP analysis using
different numbers of subframes and the choice of represen-
tation for the LP coefficients are studied. Interpolation is
done by converting the LP coefficients in one of the follow-
ing representations: line spectral frequencies, reflection co-
efficients, log area ratios, and autocorrelations. It is shown
that good performance is obtained for line spectral frequen-
cies and five subframes per frame. A new interpolation
technique which incorporates partial frame energy is intro-
duced. This technique generalizes the concept of energy
weighting to different LP coefficient representations.

1 INTRODUCTION

Many low bit rate speech coders employ linear prediction
(LP) to model the short-term spectrum for speech. The LP
coefficients are obtained from standard LP analysis, based
on blocks of input samples, typically representing 20 ms to
30 ms of speech. The LP spectrum is the spectrum of the
all-pole synthesis filter generated by the LP coefficients.

In transition segments, a large change in spectral charac-
teristics can occur in a short time interval. Abrupt changes
in the LP parameters between frames can introduce arte-
facts in the reconstructed speech. To follow the changes
in spectra or to smooth the spectral transition, the LP co-
efficients can be updated more frequently (decreasing the
frame length). However, this can increase the bit rate
needed to code the coefficients. Smoothness can also be
achieved by interpolating the LP coefficients. Interpolation
of the LP coefficients can provide improved speech quality
without requiring the transmission of additional informa-
tion.

In this paper we are interested in improving the per-
formance of interpolation of linear prediction coefficients.
Three aspects of interpolation method are studied: the ef-
fect of varying the number of subframes per frame, the
choice of representation for the LP coefficients, and partial
energy weighting for LP coefficient interpolation.

2 INTERPOLATION AND ITS
PERFORMANCE

Let a(i) be the LP coefficient vector for the ith frame. Lin-
ear interpolation can be performed as follows

b(i)(α) = (1 − α) a(i) + α a(i+1), (1)

where the parameter α measures the relative position
of the interpolated subframe, 0 ≤ α < 1. Usually
a frame is divided into several equally sized subframes,
and interpolation is done at the subframe level, i.e., the
LP coefficients are held constant for each subframe. In
that case, α = j/M , where j is the subframe number
(0 to M − 1) and M is the number of subframes per
frame. This is shown in the figure below for M = 4.
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Fig. 1 Interpolation between consecutive frames

In Fig. 1, an open circle represents a reference subframe
using the original LP coefficients. Superimposed on this
figure is a window shape showing that the calculation of
the LP coefficients, for instance a(i), depends on samples
to either side of the reference point. The filled circles rep-
resent subframes that use interpolated coefficients. These
interpolated coefficients are formed as the linear combina-
tion of the LP coefficients of the reference subframes. The
interpolated coefficients are kept fixed for the duration of
each subframe.

To evaluate the effect of interpolation on the LP spec-
trum, LP coefficients for the intermediate subframes are
also calculated. These serve as the “original” spectrum for
calculating the spectral distortion. In addition the predic-
tion gain is measured. This is the ratio of original signal
energy to the prediction residual energy. The residual sig-
nal is calculated using interpolated LP filter coefficients.

Our baseline system uses the following parameters: 8 kHz
sampling, 240 sample Hamming window, 160 sample frame
size, and 10’th order autocorrelation analysis. Different
LP coefficient representations are considered: line spectral
frequencies (LSF’s), reflection coefficients (RC’s), log-area
ratios (LAR’s), and autocorrelation coefficients (AC’s). In
all of these representations, an appropriately weighted sum
of LP coefficients corresponding to stable synthesis filters,
gives an interpolated LP vector corresponding to a stable
synthesis filter.

Our first inquiry is as to the choice of the number of sub-
frames per frame. When the number of subframes is equal
to 1 (M = 1), no interpolation is used. At the other ex-
treme, if the number of subframes is equal to the number of
samples in the frame, the LP coefficients change at every
sample time. The table below shows the prediction gain
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that results for different numbers of subframes per frame
for the different LP coefficient representations. These val-
ues are computed for a composite speech file containing
both male and female speech. From the table, the predic-
tion gain peaks at about 5 subframes per frame. The fact
that the prediction gain is not monotonically increasing
with the number of subframes may at first seem surprising.
However, further examination of the configuration (see for
instance Fig. 1) shows that for speech samples near the
reference point, it is undesirable to contaminate the LP co-
efficients with coefficients from the next frame that have
been calculated with a window that does not overlap the
samples near the reference point.

Table 1 Prediction gain for different representations for LP
coefficients for different numbers of subframes/frame.

M LSF RC LAR AC

1 16.45 16.45 16.45 16.45
2 16.47 16.44 16.45 16.44
4 16.50 16.46 16.47 16.46
5 16.53 16.49 16.50 16.48
8 16.52 16.48 16.50 16.48
10 16.52 16.48 16.49 16.47
16 16.52 16.48 16.49 16.47
20 16.52 16.48 16.50 16.48

The table of prediction gains shows that for conventional
interpolation, LSF’s outperform the other LP representa-
tions. This is consistent with previous results which have
shown that LSF interpolation performs well in terms of
spectral distortion [1, 2] and in listening tests [3].

3 THE EFFECT OF FRAME ENERGY
Our objective is to find how well the interpolation pro-
cess models the intermediate subframes. In particular, we
plot the spectral distortion (in this case for M = 2 and
LSF parameters) below the subframe energy. Note that for
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Fig. 2 Effect of change in subframe energy on spectral distor-
tion

M = 2, for every second subframe the spectral distortion
is zero (no interpolation is occurring). For the interpolated
subframes, the spectral distortion increases at energy on-
sets. It has been previously suggested that interpolation
should take into account the frame energy [4, 5]. Specifi-
cally, it has been suggested that interpolation should use
the energy-weighted autocorrelation coefficients.

Interpolation of autocorrelation coefficients and interpo-
lation of line spectral frequencies differ in quite a fundamen-
tal way. Consider two frames of speech, exhibiting sharp
resonances at ω1 and ω2 respectively. Since the autocor-
relation values are linearly related to the power spectrum,
interpolation of the autocorrelation is equivalent to inter-
polation of the (linear domain) power spectrum. For the
case cited, the interpolated spectrum will consist of the
sum of the peaks. As the parameter α varies from 0 to
1, the contribution of the peak at ω1 decreases while the
contribution of the peak at ω2 increases. Now consider,
LSF interpolation. Peaks in the spectrum are generally
signalled by closely spaced LSF’s. Assuming the peaks are
not too far apart (the same two LSF’s contribute to the
peaks for both frames), the interpolated coefficients will
show a single peak at an intermediate frequency. The fig-
ure below shows the power spectrum for two frames. (This
data has been contrived to show two separated peaks.)
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Fig. 3 Power spectrum for two frames (thick lines), along with
LSF interpolation (single peak, thin line) and AC interpolation
(double peak, thin line)

It seems clear that for steady voiced speech, LSF inter-
polation is to be preferred. The spectral peaks retain their
bandwidth and shift smoothly in frequency. In contrast,
autocorrelation interpolation, even for small shifts in the lo-
cation of the peaks, will generate interpolated peaks which
are wider in bandwidth. However, at voicing onsets where
the position of excitation in the vocal tract changes, the
type of modelling implied by autocorrelation interpolation
may be preferred.

4 PARTIAL-ENERGY WEIGHTED
INTERPOLATION

In this section, we generalize the concept of energy-
weighting in the interpolation process. For the sake of ex-
position, consider interpolating autocorrelation coefficients.
In this case, the autocorrelation coefficient vectors are nor-
malized so that the first coefficient is unity. The first gen-



eralization is to allow partial-energy weighting,

EαR(i)(α) = (1 − α)Eγ
i R(i) + αEγ

i+1R
(i+1). (2)

For γ = 0, we get interpolation of the normalized auto-
correlation coefficients. For γ = 1, we get interpolation of
the energy-weighted autocorrelation coefficients. Since the
zero’th autocorrelation coefficient is normalized to unity,

Eα = (1 − α)Eγ
i + αEγ

i+1. (3)

With this relation, the interpolation can be written in a
simpler form,

R(i)(α) = (1 − β)R(i) + βR(i+1), (4)

where

β =
αEγ

i

(1 − α)Eγ
i + αEγ

i+1

. (5)

In fact, this same interpolation can be applied to any LP
representation,

b(i)(α) = (1 − β) a(i) + β a(i+1). (6)

For Ei = Ei+1 or γ = 0, we get ordinary linear interpola-
tion (β = α). The non-linear effect of the energy differences
is illustrated in the figure below. It plots β versus α for dif-
ferent values of the partial energy ratio ρ = (Ei/Ei+1)γ .
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Fig. 4 Interpolation factor β as a function of subframe position
α for different values of partial energy ratio.

We now apply this new interpolation procedure to auto-
correlation coefficients and to LSF’s. The goal is to investi-
gate the performance in terms of the partial-energy weight-
ing exponent γ. The average prediction gain and spectral
distortion are measured. For both prediction gain and
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Fig. 5 Effect of the energy exponent γ on prediction gain

spectral distortion, no energy weighting seems to be best
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Fig. 6 Effect of the energy exponent γ on the average spectral
distortion

for LSF interpolation. For autocorrelation interpolation,
the results are more mixed. In terms of prediction gains,
an RMS weighting (γ = 0.5) is best. However, in terms of
spectral distortion, a smaller energy weighting is best.

5 DISCUSSION
The results show that there is a best number of subframes
per frame. Interpolation in the LSF domain produces the
largest prediction gain and smallest average spectral dis-
tortion. Energy weighting is not particularly effective in
terms of prediction gain or average spectral distortion. For
autocorrelation interpolation, an RMS weighting (γ = 0.5)
is better than full energy weighting. This study highlights
the inadequacy of the performance measures used to as-
sess LP spectral distortion. For a given level of spectral
mismatch, the audible effect can be quite different depend-
ing on the relative energy of the frames and/or the sur-
rounding context. An adaptive interpolation strategy (for
instance, autocorrelation interpolation (with partial-energy
weighting) at onsets and LSF interpolation in steady-state
regions) would seem to be good solution.
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