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Abstract
Conventional Linear Prediction (LP) techniques can fail
to adequately model speech spectra when the model or-
der is too low and/or when the input is periodic (voiced
speech). In this paper, we view the LP modelling prob-
lem as a correlation matching problem. We introduce a
correlation matching criterion which models the signal as a
filtered mixture of a noise-like excitation and a periodic ex-
citation. As such it is an extension of the Discrete All-Pole
(DAP) modelling approach. The new technique provides a
means to generate LP spectra that evolve more smoothly
from frame to frame even when the excitation signal has a
periodic component with changing period.

1 Introduction
Conventional LP analysis often produces spuriously varying
spectra when the LP analysis order is less than the order
of the process which generated the data samples and/or
when the pitch harmonics interact with the spectral peaks
(formants). Conventional LP procedures match the data
correlations, but only for the first few correlation lags. By
extending the analysis to include more correlation lags, we
can get compromise matches which lead to better overall
power spectral fits, particularly if the LP analysis order is
too small to adequately model the data spectra.
For periodic inputs, the Discrete All-Pole (DAP) model

introduced by El-Jaroudi and Makhoul [1] provides a frame-
work for modelling discrete spectra. DAP analysis has
been applied to spectral modelling in Multiband Excita-
tion (MBE) [2] and Sinusoidal Transform Coding (STC) [3]
coding of speech. In this paper, we extend the DAP frame-
work to handle mixed excitation signals and to incorporate
more correlation values.

A model of speech production consisting of an excitation
signal driving an all-pole model is shown in Fig. 1. The
conventional LP formulation attempts to minimize the pre-
diction error. Another viewpoint is that the task of LP
analysis is to identify the all-pole filter used to synthesize
the speech.
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Fig. 1 Synthesis and analysis

Consider a white noise input excitation signal. The fil-
ter output data is observed over a long enough interval to

obtain good correlation estimates. If the LP analysis order
matches that of the synthesis filter, choosing the coefficients
of Â(z) to minimize the energy of the prediction residual
leads to the condition that Â(z) = A(z), i.e., the analysis
has identified the synthesis filter parameters. However, for
other conditions such as periodic excitation, short observa-
tion intervals, and additive noise, ordinary LP analysis may
give poor matches.

1.1 Correlation matching properties

The conventional LP (autocorrelation) solution can be ex-
pressed using the augmented normal equations (Np + 1 ×
Np + 1),

Rxa = σ2
ee0, (1)

where aT = [1,−cT ] and e0 is the unit vector, eT
0 =

[1, 0, . . . , 0]. The Toeplitz matrix Rx is completely deter-
mined by the correlation values rxx(0), . . . , rxx(Np). The
energy of the input signal, rxx(0), scales the output of the
prediction error filter. The set of linear equations provides
a one-to-one mapping between the set of Np +1 correlation
values and the Np predictor coefficients together with the
prediction residual energy σ2

e .

The scaled all-pole synthesis filter is,

H(z) = G/Â(z). (2)

The correlation of this filter satisfies,

rhh(n) =

Np∑

k=1

ck rhh(n − k) + Gh(−n). (3)

or in vector-matrix notation,

Rha = G2e0, (4)

where Rh is an Nv + 1 by Np + 1 Toeplitz matrix. For
Nv = Np, the filter correlations satisfy the same equations
as the data correlations. This is the correlation matching
property,

rhh(k) = rxx(k), 0 ≤ k ≤ Np. (5)

1.2 Extended correlation match

In practice, finite length windows are used to estimate the
correlation values. As an example, a white Gaussian ex-
citation is applied to a fixed 12’th order all-pole synthe-
sis filter.1 The analysis is 8’th order using a 240 sample
Hamming window. Figure 2 shows a sequence of estimates.

1The first 13 correlation values are 24.3764, 17.3379, 2.4673,
−8.1612, −8.0057, −0.7891, 4.2354, 1.8711, −5.0436, −10.5401,
−11.4046, −8.6134, and −4.7546. The spectrum appears in Fig. 4.
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There are two effects here. First the 8’th order filter can-
not completely model the input. Second, the formant peaks
change due to the variations in the correlation estimates.
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Fig. 2 Conventional LP match (8’th order) spectral fits for
noisy correlation estimates (240 sample Hamming window).

Choosing a longer 320 sample window does not improve
the situation much. Using multi-taper analysis [4] with ap-
proximately the same spectral resolution (NW = 2) as the
240 sample Hamming window also does not help much in
reducing the variability.
Consider trying to match more correlation values [5, 6],

ε2
c = min

a,G

Nv−1∑

k=0

wk

(
rxx(k)− rhh(k)

)2
. (6)

Minimizing this error criterion leads to a non-linear set of
equations. Experiments show that convergence is trouble-
some and that many local minima exist. In some cases,
local minima with nearly equal errors give very different
spectra.
As an alternative, we can extend the number of equations

in Eq. (1),

ε2
e = min

a,G
‖W 1/2(Rxa − G2e0)‖2, (7)

where W is a diagonal matrix of weights. The matrix Rx

is now Nv +1 by Np +1. This formulation is known as the
overdetermined normal equations method [6] or the model
equation error method [7]. Minimizing the mean-square
equation error leads to a set of linear equations. Since
Eq. (7) uses higher order correlations, the match will differ
from that of a conventional LP solution.
Figure 3 shows the match for the same set of data consid-

ered earlier. Four extra equation terms were used.2 Note
that the formant peaks are now more consistently repre-
sented. The emphasis has shifted to better match the higher
amplitude formants.

2 Periodic Signals
If the observed signal x(n) is periodic, the correlation values
calculated from the data are also periodic,

rxx(n) = rxx(n − lP ), (8)

where P is the integer-valued period. This aliased correla-
tion is what would be calculated from the observed data.
Applying conventional LP analysis to these aliased cor-

relation values gives a different set of predictor coefficients
2The weight values used are 1, 0.9998, 0.9969, 0.9847, 0.9533,

0.8931, 0.8011, 0.6850, 0.5603, 0.4431, 0.3430, 0.2628, 0.2011.
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Fig. 3 Overdetermined equation (8’th order) spectral fits for
noisy correlation estimates (240 sample Hamming window).

than would have been calculated if the unaliased correla-
tion values were available. The predictor coefficients do not
match the coefficients of the all-pole filter that generated
the observed periodic signal.

2.1 Discrete all-pole modelling

El-Jaroudi and Makhoul [1] suggested an iterative proce-
dure which they term Discrete All-Pole (DAP) modelling to
handle general discrete spectra. Here we focus on discrete
spectra generated by periodic sequences. Recall the one-to-
one mapping between the predictor coefficients and the cor-
relation values rhh(n). We can form a time-aliased version
of the filter response correlations (period P ) r̃hh(n). The
error between the (periodic) values rxx(n) and r̃hh(n) can
be used to iterate the filter coefficient values. We develop
an approach which can be used to match the time-aliased
correlations without explicit calculation of the correlation
values r̃hh(n).
The aliased impulse response of the filter is the response

to a periodic train of unit pulses,

h̃(n) =

∞∑

l=−∞
h(n − lP ). (9)

Note that h̃(n) is the response to a non-causal input se-
quence and hence is non-zero for negative n. The correla-
tion function for h̃(n) is periodic

r̃hh(k) =
∞∑

l=−∞
rhh(k − lP ). (10)

For a periodic impulse train input, the relationship cor-
responding to Eq. (3) is

r̃hh(n) =

Np∑

k=1

ck r̃hh(n − k) + G h̃(−n), all n. (11)

In the conventional LP case, we have a simplification be-
cause h(n) is causal. For periodic signals we have to take
into account terms in h̃(n) for negative n.
For periodic signals, we can have a periodic correlation

matching condition,

r̃hh(n) = rxx(n), 0 ≤ n ≤ Np. (12)

Substituting this into Eq. (11), we get a set of vector-matrix
equations analogous to Eq. (1)

Rxa = G h̃, (13)



where the elements of h̃ are h̃(0), h̃(−1), . . . , h̃(−Np). These
equations are non-linear since h̃ depends on a. The Rx

matrix contains the (periodic) correlation for the observed
data sequence.

If the observed correlation was not generated by an all-
pole filter with the same number of terms as the analysis
filter, then it may not be possible to match the aliased corre-
lation values. It is shown in [1] that so-called singular cases
can occur. An iterative procedure is used to find the solu-
tion, starting from the solution corresponding to the con-
ventional LP analysis. Since the initial solution is known to
have its roots inside the unit circle (minimum phase), El-
Jaroudi and Makhoul suggest stopping the iteration short
of convergence to avoid the singular case.

Consider fitting the 12’th order spectrum considered ear-
lier. The input is periodic (32 sample period) and exact
correlations are available. With a 12’th order fit, the DAP
method eventually converges to the correct solution, while
conventional LP misses the mark. When the fit is reduced
to 8’th order, the DAP method gives reasonable matches at
the harmonics of the spectrum but generates sharp peaks
between the harmonics as illustrated in Fig. 4.
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Fig. 4 Comparison of 8’th order all-pole fits to a 12’th order
all-pole spectrum for a periodic input (P = 32). The solid line
is the true spectral envelope, the dashed line is the conventional
LP fit, and the dash-dot line is the fit using a Discrete All-Pole
match.

2.2 Overdetermined approach for DAP

We can augments the DAP formulation to give an overde-
termined set of equations. The error to be minimized is

ε2
p = min

a,G
‖W 1/2(Rxa − G h̃)‖2, (14)

where the matrix Rx is rectangular (Nv +1 by Np +1) and
h̃ is [h̃(0), h̃(−1), . . . , h̃(−Nv)]

T .

The periodic correlation considered earlier will now be
matched using an 8’th order DAPmodel using 12 equations.
Fig. 5 shows that the effect of using more equations is to
“tame” the DAP spectrum.

The concept of an overdetermined match is particularly
useful if as in the example, the signal is generated by an all-
pole filter of higher order than used in analysis. For systems
where there is a good match in order, the overdetermined
approach does not usually help and can sometimes make
the match somewhat worse. Our experiments have shown
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Fig. 5 Comparison of 8’th order all-pole fits to a 12’th order
all-pole spectrum for a periodic input (P = 32). The solid line
is the true spectral envelope, the dashed line is the conventional
LP fit, and the dash-dot line is the fit using a Discrete All-Pole
match minimizing an overdetermined equation criterion.

that choosing a small weight (much smaller than the val-
ues shown for the earlier example) for the extra equations
still helps the case where the model order is too small, but
does not change the solution much when the model order is
adequate.

3 Mixed signals
The effective input to the speech synthesis filter for real
speech signals is not perfectly periodic or perfectly random.
Let a mixed signal be applied to the filter H(z). The input
signal is

ẽ(n) = P
∞∑

l=−∞
δ(n − lP + θ) ∗ hL(n) + η(n) ∗ hH(n). (15)

This signal is the sum of a (lowpass) filtered periodic im-
pulse train, and a (highpass) filtered zero-mean white noise
sequence (unit variance). The periodic part has a random
time offset, 0 ≤ θ < P − 1 and has been normalized to have
a unit average energy per period. The two filters are chosen
to be power complementary and include scaling to control
the amount of periodicity as a function of frequency. At the
output of the filter, the correlation of the sequence consists
of two additive terms,

r̃hh(k) = rhh(k) +
∞∑

l=−∞
l�=0

rhh(k − lP ) ∗ rL(k), (16)

where rL(k) is the correlation for the filter applied to the
periodic input. The effect of a periodic component becomes
more significant for correlations which die off slowly and/or
for short periods.

Extending the development that led to Eq. (3) to the
mixed excitation case,

r̃hh(n) =

Np∑

k=1

ck r̃hh(n − k) + Gh̃(−n), (17)

where

h̃(−n) = h(−n) +
∞∑

l=−∞
l�=0

h(−(n − lP )) ∗ rL(n). (18)



This is consistent with the result for the purely periodic
case when rL(k) = δ(k) and for the purely random case
when rL(k) = 0.

This procedure assumes that the both the period and
the periodicity factor are known. In speech coders, these
parameters can be estimated as a byproduct of coding the
pitch information.

Example

Consider a first-order filter with response

|HL(ω)|2 = ρ0 + ρπ

2
+

ρ0 − ρπ

2
cos(ω), (19)

where ρ0 is the response at ω = 0 and ρπ is the re-
sponse at ω = π. The complementary filter has response
|HH(ω)|2 = 1 − |HL(ω)|2. This parameterization allows
the relative amounts of periodic and aperiodic excitation
to be varied across frequency. These first-order filters have
3-term correlation functions.

For this example, the signal corresponds to a 10’th order
spectrum. The mixed excitation signal is generated with
ρ0 = 0.95 and ρπ = 0.2, with period varying from 30–
60 samples. For analysis, we use a 240 sample Hamming
window and use 10’th order analysis. Figure 6 shows the the
spectral fits for conventional LP analysis. The fit is worst
for the smallest period, since this corresponds to spectral
lines which are far apart, or equivalently the correlations
are most affected by aliasing.
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Fig. 6 Conventional 10’th order LP spectral fits for varying
pitch period (240 sample Hamming window).

For comparison, the estimates in Fig. 7 were generated
by the DAP algorithm run 5 iterations beyond the initial
LP estimate. The DAP analysis gives significantly more
consistent spectral estimates. For this example, the DAP
algorithm was given information as to the periodicity fac-
tors and the period. Moderate mismatches of the periodic-
ity factors do not seriously affect the fit, particularly since
underestimation of the periodicity factor moves the solution
towards that for conventional LP.

4 Summary and Conclusions
This paper has introduced methods for achieving better all-
pole spectral estimates. For aperiodic (unvoiced) signals,
an overdetermined equation approach provides estimates
which are more consistent from frame to frame, particu-
larly if the analysis order is too low. The overdetermined
equation error approach also “tames” the discrete all-pole
method for periodic signals.
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Fig. 7 DAP 10’th order spectral fits for varying pitch period
(240 sample Hamming window).

A new approach to all-pole modelling of mixed signals
better models this case, mitigating problems of formant /
pitch interaction that are the bane of conventional LP anal-
ysis. In the examples, simple first order filters were used to
control the periodicity across frequency. For some cases,
more sophisticated separation may be warranted. For in-
stance, in the case of MBE coding, the spectrum is consid-
ered to be periodic below a critical frequency and aperiodic
above. This fits in neatly with the mixed excitation model
for appropriately chosen lowpass and highpass filters.
More exact modelling of the interaction between formant

and pitch can be achieved by estimating the pitch epoch off-
set (in our analysis, the results were obtained by averaging
over all offsets), by modelling the frequency spreading effect
of data windows, and by estimating the voicing mixture as
a function of frequency.
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