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Abstract

Traditional algorithms for suppressing background
noise in speech signals can add annoying artefacts to
the resulting denoised signal. In applications requir-
ing better than toll quality, it is desirable that noise
suppression should not add any audible artefacts. This
paper describes a method that is effective for narrow-
band and applies these methods to wideband signals.
The method presented uses a high-resolution psychoa-
coustic model originally developed for the evaluation of
audio quality, and combines it with a method originally
developed for audio signal enhancement. It is shown
that while the method works well in narrowband ap-
plications, in wideband signals the quality needs to be
improved.

1 Introduction

Reducing the background acoustic noise in speech sig-
nals has received a great deal of attention in literature
because of the increasing popularity of mobile phones.
The methods developed so far have mostly been for nar-
rowband speech signals, and were aimed at removing
as much background noise as possible while retaining
or improving intelligibility.

However, traditional noise reduction algorithms tend
to add unnatural-sounding artefacts. The best known
of these is musical noise, although distortion of the
speech signal is often evident as well. These artefacts,
if strongly audible, lower the perceived quality of the
signal, even though the energy of the noise relative to
the energy of the speech has been lowered.

Networks transmitting wideband speech have greater
perceived quality of signal due to the larger bandwidth.
In these systems it is therefore desirable to have noise
reduction systems that do not add annoying artefacts.

This paper describes a method that uses psychoa-
coustics to improve the process of noise reduction.
Specifically, the effect of masking, where stronger
sounds can render weaker nearby sounds inaudible, is
used to focus the modification of the signal onto the
audible noise. Since this reduces the total amount of
signal modification necessary, fewer artifacts are gen-
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erated. It has been found that this method works well
for narrowband signals, and thus it has been adapted
for wideband signals.

2 Description of method

This paper provides a description of the overall noise
suppression algorithm. The development of this
method is described in [1], which also examines sim-
ilar methods and gives comparative results.

The method proposed falls into the category of ba-
sic Short-Time Spectral Amplitude (STSA) modifica-
tion algorithms. This means that the processing is per-
formed by sectioning the input signal into short frames,
which are then transformed into frequency domain us-
ing a Discrete-Fourier Transform (DFT). The result of
the DFT is split into the magnitude and phase com-
ponents, and all further noise suppression processing
is performed on the magnitude component. After pro-
cessing, the time-domain signal is reconstructed from
the modified magnitude and the original phase compo-
nent.

The method for processing the signal and use of the
psychoacoustic model is derived from a method devel-
oped by Soulodre [2] to remove camera noise from film
soundtracks. Soulodre based his research on methods
found in the field of audio enhancement, in particular
by Tsoukalas et al [3].

2.1 Input Signal Analysis

Wideband speech is sampled at fs = 16 000 Hz. For
noise suppression, frames should be processed every 20–
40 ms, so for the proposed method, the framesize with
overlap (at 50%) is set to NF = 1024. Thus, the frames
are 64 ms long, and the frame advance is 32 ms.

The current frame x[n, p] (where p denotes the frame
counter) is windowed by a window obtained from the
square root of the Hann window, defined by

h[n] =

√
1
2

(
1− cos

(
2π
n+ 0.5
NF

))
, (1)

where n = 0, . . . , NF − 1. The frame is then converted
into discrete frequency domain using a scaled Discrete-

Proc. Biennial Symp. Commun. (Kingston, ON), pp. 516-519, June 2002



Fourier Transform,

X[k, p] =
1
NF

NF−1∑
n=0

h[n]x[n, p]e−j2πnk/NF , (2)

where k = 0, . . . , NF /2, since x[n, p] is assumed to be
real.

2.2 Noise Spectrum Estimate

An estimate of the current noise spectrum is obtained
using a Voice Activity Detector (VAD) to determine if
the current frame contains energy due to speech. If the
frame is considered noise only, it is used to update the
current noise estimate, in addition to being processed
in the normal fashion. The noise estimate is obtained
by exponentially averaging the magnitude spectra of
the noise only frames,

Ŵ [k, p] = λW Ŵ [k, p− 1] + (1− λW )
∣∣X[k, p]

∣∣, (3)

where 0 ≤ λW < 1 controls the speed with which the
noise estimate adapts to changes in the noise spectrum.
A value of λW = 0.97 was used.

If the VAD detects speech in the current frame, the
noise estimate is not modified, so Ŵ [k, p] = Ŵ [k, p−1].

2.3 Perceptual Based Spectral Subtraction

An initial estimate of the clean speech is obtained
by subtracting the noise estimate magnitude spectrum
from the magnitude spectrum of the current unpro-
cessed speech frame. Similar to traditional spectral
subtraction noise suppression,

Ŝ1[k, p] = max(|X[k, p]| − Ŵ [k, p], 0). (4)

At this stage, the perceptual model is applied to both
the clean speech estimate Ŝ1 and the noise estimate Ŵ ,
separately. The model used in this case is the basic
model of ITU-R BS.1387 [4], described below. It out-
puts an excitation pattern at a resolution of 0.25 Bark,
that is, about four “bins” per critical band. This exci-
tation pattern relates closely to the masking threshold,
the frequency dependent threshold below which addi-
tional sounds are inaudible.

The Bark domain gain is obtained using Soulodre’s
formula,

GBark[b, p] =
PE(Ŝ1[k, p])
PE(|X[k, p]|)

, (5)

where PE(·) denotes applying the perceptual model,
and b = 0, . . . , Bfmax is the index of sub-critical bands
in perceptual domain (see below). This formula will
attenuate the signal at the frequencies where the noise
is very audible (low excitation from the clean speech,
but high excitation from the noisy speech).

Figure 1 shows the overall gain calculation structure.
The perceptual domain gain GBark[b, p] is mapped into
linear domain by the following procedure. Linear gain
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Fig. 1 Gain calculation using Soulodres method

bins G1[k, p] that are fully within a perceptual gain
bin GBark[b, p] assume the gain of that bin. Linear bins
that fall on the boundary of two perceptual bins are
assigned a gain that is linearly interpolated from the
gains of the perceptual bins.

2.4 Overview of the Perceptual Model

As mentioned above, the perceptual model is derived
from the basic model used by the ITU-R recommenda-
tion BS.1387. Since a full description of all the steps
required to obtain the excitation pattern is outside the
scope of this paper, only an outline of the algorithm
is given here, with some key points explained in more
detail.

First, since some aspects of sound perception are de-
pendent on absolute sound pressure, the input to the
perceptual model is scaled to the assumption that a
full-range input sine wave is at 92 dBSPL. Also, a
frequency dependent weighing function is applied to
model the frequency response of the outer and middle
ear. The weighing function appears to be based on
work done by Terhard [5].

The resulting scaled spectrum is now converted into
perceptual domain. In the case of the basic model of
BS.1387, the linear spectrum is mapped into a discrete
Bark domain, where each bin represents 0.25 Bark.
The center frequency of each bin is given by

fc = 650 sinh(z/7), (6)

where fc is in kHz and z is in Bark. Note that where b is
used, it is meant to represent a bin in the discrete Bark
domain, where the difference between bins is ∆z =
0.25Bark.

To model the internal noise of the auditory system,
a frequency-dependent offset is added to the percep-
tual spectrum. The resulting pitch patterns are denoted
E[b, p].

At this stage, the critical step of spreading is per-
formed. Here, it is calculated how sounds close to
each other in time and frequency affect each other.
The resulting Excitation Pattern will be independent
of sounds that are inaudible. The excitation pattern



is calculated in two steps: frequency-domain spreading
and temporal smearing.

The frequency domain (actually in perceptual do-
main) spreading is calculated by

Es[b, p] =
1

BSP[b]

(Nb−1∑
l=0

(E[l, p]S(b, l, E[l, p]))0.4

) 1
0.4

,

(7)
where Nb denotes the number of perceptual domain
bins. BSP[b] is a normalization factor given by

BSP[b] =
(Nb−1∑

l=0

S(b, l, 1)0.4

) 1
0.4

, (8)

and S(·, ·, ·) denotes the actual spreading function,
given by

S(b, l, E) =
1

A(l, E)
10SdB(b,l,E)/10, (9)

where A(l, E) is a normalization term to give a unit
area to each center frequency l. The slopes of the
spreading functions are expressed in dB, as

SdB(b, l, E) ={
27(b− l)∆z, b ≤ l,[
−24− 230

fc[l]
+ 2 log10(E)

]
(b− l)∆z, b > l,

(10)

where ∆z = 0.25.
The second step is to calculate the frequency de-

pendent temporal smearing, giving the final Excitation
Pattern ẼS [b, p]. The temporal smearing is calculated
by

Ef [b, p] = α[b]Ef [b, p− 1] + (1− α[b])ES [b, p]
ẼS [b, p] = max(Ef [b, p], ES [b, p]).

(11)
The parameter α[b] controls the time constant for the
averaging for the decaying energies, to model the effect
of backwards masking. It is calculated by

α[b] = exp
(
− NF /2
fsτ [b]

)
, (12)

where
τ [b] = τmin +

100
fc[b]

(τ100 − τmin), (13)

where τ100 = 0.030 s and τmin = 0.008 s.

2.5 Output Signal Synthesis

The gains G1[k, p] are smoothed by an exponential av-
erage similar to (3),

G2[k, p] = λFG2[k, p− 1] + (1− λF )G1[k, p], (14)

to reduce any musical noise that might still appear.
A low value of λf = 0.01 was used successfully. The

resulting smoothed gains are constrained to a minimum
to add a natural-sounding “noise floor”,

G[k, p] = max(G2[k, p], α), (15)

where α = 0.1. The gains G[k, p] are applied to the
speech spectrum to get the estimated speech spectrum
by

Ŝ[k, p] = G[k, p]X[k, p], (16)
from which the time-domain signal is reconstructed
by computing the Inverse Discrete-Fourier Transform.
The result is windowed to avoid discontinuities at frame
boundaries, giving

ŝ[n, p] = h[n]
NF /2∑

k=−NF /2

Ŝ[|k|, p]ej2πnk/NF . (17)

Finally, frame overlap is handled by the overlap-add
method, that is, the last half of the previous frame is
added to the first half of the current frame.

3 Results

Informal listening tests have suggested that with nar-
rowband speech this method works well even at low
Signal-to-Noise Ratio (SNR). Compared with more tra-
ditional noise suppression algorithms, there are fewer
audible artefacts in the resulting noise suppressed
speech, for the same degree of noise suppression. Here
it is tested if the same applies for wideband speech sig-
nals.

To compare, two speech files (one male speaker and
one female speaker) were mixed with two types of noise,
at two levels of SNR (0 dB and 20 dB)1. The first
noise was recorded in a car driving at 120 km/h, and is
strongly lowpass (at 5000 Hz, 60 dB below maximum
at 125 Hz). The second noise is “room noise” consist-
ing mainly of fan noise from a desktop computer, and
is more white (at 5000 Hz, 25 dB below maximum at
150 Hz).

The proposed method is compared to the common
spectral subtraction method, based on Boll [7]. The
implementation is similar to the perceptual method de-
scribed above, except the perceptual part described in
Section 2.3 is replaced with

G1[k, p] = max

(
1− kB

(
(Ŵ [k, p])a

|X[k, p]|a

)
, 0

) 1
a

, (18)

where kB = 1.5 is the oversubtraction factor. a is a
parameter to choose energy or power domain spectral
subtraction (by setting a to 1 or 2, respectively). In
these tests, a = 1 was used. This gain formula is a

1For the purposes of calculating the level at which noise is
added to the speech, the speech level was calculated according
to ITU-T recommendation P.56 [6]



generalization of Eq. (4). In addition, to reduce the
musical noise, λF was increased to 0.2.

The samples2 were presented to 6 listeners in a A/B
comparison test. The listeners would indicate whether
they preferred file “A”, “B” or if they were equally
preferred. While the sample is too small to draw solid
conclusions, it is nevertheless informative, based on the
feedback from the listeners.

Room Noise Car Noise
Subtraction Type 20 dB 0 dB 20 dB 0 dB
Perceptual 12 11 6 13
Boll 5 11 6 11
no preference 7 12 12 0

Table 1 Preferences of subtraction methods versus type
and level of background noise

Unlike the results in [1], no strong preference can be
shown either for or against the perceptual noise reduc-
tion method. Table 1 show the results of the tests,
where the responses for the male and female speech
samples have been summed.

However, some observations can be made from the
tests. Some listeners will quickly focus on one single
type of artefacts, and ignore any others. Two listeners
found musical noise annoying and preferred the percep-
tual method almost all the time. One listener consid-
ered speech distortion annoying and mostly preferred
the non-perceptual method. The samples processed by
the perceptual method are almost completely free of
audible musical noise, but exhibit more speech distor-
tion than the nonperceptual method.

There are several possible explanations for the lack
of improvement by the perceptual processing for wide-
band speech in contrast to similar experiments with
narrowband speech. The most likely explanation is
that distortions at higher frequencies are more audi-
ble, or rather, are considered more annoying.

The choice of the parameters λF , α, and kB also
poses a problem in spectral subtraction, since these pa-
rameters can be tuned depending on the signal, noise
and personal preference. One advantage of perceptual
processing is that the effect of changing these param-
eters was found to be much smaller than for the non-
perceptual method.

3.1 Future Work

From the above results, it is clear that the perceptual
noise reduction method needs to be improved in order
to be useful in wideband applications, in contrast to
Boll’s method, which is much lower complexity. The

2The sample files can be found on-line at
http://www.tsp.ece.mcgill.ca/Kabal/papers.

focus should be on reducing the audible distortion of
the speech signal, which may be achieved by nonlinear
scaling of the gain function G1[k, p], or improving the
initial clean speech estimate Ŝ1[k, p]. Another possibil-
ity is to add a preemphasis and deemphasis stage that
would cause strong noise suppression at low frequen-
cies, and less at high frequencies.

4 Conclusion

Use of a perceptual model in noise subtraction has been
shown to improve the resulting signal in both narrow-
band signals and audio-quality signals. The perceptual
model calculates the exitation pattern in the percep-
tual domain, of the original noisy signal and an initial
estimate of the clean speech. The ratio of these exita-
tion patterns is used to obtain a frequency dependent
attenuation which is applied to the noisy speech signal.

In this paper, this method was used with wideband
speech signals, at relatively high and low SNR. How-
ever, it was found that while musical noise is rendered
inaudible, the denoised speech exhibits significant dis-
tortion. This distortion is highly annoying to some
listeners, and further work to reduce the distortion is
necessary.
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versity, Montréal, Canada, 1998.

[3] D. E. Tsoukalas, J. N. Mourjopoulos, and G. Kokki-
nakis, “Perceptual filters for audio signal enhance-
ment,” J. Audio Eng. Soc., vol. 45, no. 1/2, pp. 22–35,
Jan/Feb 1997.

[4] International Telecommunications Union, “Method for
objective measurements of perceived audio quality,”
1998, Recommendation ITU-R BS.1387.

[5] E. Terhardt, G. Stoll, and M. Seewann, “Algorithm
for extraction of pitch and pitch salience from complex
tonal signals,” J. Acoust. Soc. Am., vol. 71, no. 3, Mar.
1982.

[6] International Telecommunications Union, “Objective
measurement of active speech level,” 1993, Recommen-
dation ITU-T P.56.

[7] S. F. Boll, “Suppression of acoustic noise in speech using
spectral subtraction,” IEEE Trans. Acoustics, Speech,
Signal Processing, vol. ASSP-27, no. 2, Apr. 1979.


