Proc. IEEE Canadian Conf. Electrical, Computer Engineering (Montreal, QC), pp. 997-1000, May 2003

AN ADAPTIVE PLAYOUT ALGORITHM WITH
DELAY SPIKE DETECTION FOR REAL-TIME VOIP

Aziz Shallwani

Peter Kabal

Department of Electrical and Computer Engineering
MecGill University, Montréal, Canada
{ashallwani, kabal } @tsp.ece.mcgill.ca

Abstract

As the Internet is a best-effort delivery network, audio pack-
ets may be delayed or lost en route to the receiver due to
network congestion. To compensate for the variation in net-
work delay, audio applications buffer received packets be-
fore playing them out. Basic algorithms adjust the packet
playout time during periods of silence such that all packets
within a talkspurt are equally delayed. Another approach is
to scale individual voice packets using dynamic time-scale
madification.

In this work, an adaptive playout algorithm based on
the normalized least mean square algorithm, is improved
by introducing a spike-detection mode to rapidly adjust
to delay spikes. Simulations on Internet traces show
that the enhanced bi-modal playout algorithm improves
performance by reducing both the average delay and the
loss rate as compared to the original algorithm,

Keywords: adaptive playout buffer, jitter, VoIP, NLMS
predictor

1. Introduction

Voice transmission over the Internet is subject to network
delay and loss. At the transmitter, speech/audio packets are
generated at regular intervals and sent to the receiver. Ide-
ally, the receiver would play the packets out at the same
schedule. However, the network delay experienced by dif-
ferent packets may vary due to network congestion. The
variation in network delay is referred to as jitter. If pack-
ets are played out at the receiver immediately upon arrival,
there will be gaps in the playout because packets may arrive
after their scheduled playout time, as illustrated in Fig. 1(a).
The destination can reduce the “loss” due to late packets by
storing received packets in a playout buffer before playing
them out, as shown in Fig. 1(b).

Network delay traces are characterized by frequent oc-
currences of spikes in the network delays. Since end-10-end
delays beyond 300 ms are irritating to users and impair in-
teractivity in real-time conversations, the playout buffering
delay is used to adjust the tradeoff between total end-to-end

CCECE 2003 - CCGEI 2003, Montréal, May/mai 2003
0-7803-7781-8/03/$17.00 © 2003 [EEE

Source

Time Play Play Late Play
(a) No buffering

Source

Buffe

D\:al:; l l T
- Play Play Play Play
Time

(h) Packets are buffered

Fig.1 The playout buffering problem [1]

delay and loss rate. Packets with network delays greater
than the playout delay will still be “lost”, however 5% loss
can be tolerated when packet loss concealment methods are
applied. Adaptive playout buffer algorithms attempt to ad-
just the playout delay for changing network conditions,
Existing adaptive playout buffer algorithms are reviewed
in the next section. Section 3 proposes the addition of a
spike mode to the adaptive NLMS playout algorithm. The
proposed algorithm is evaluated using delay traces and sim-
ulation results in Section 4 show a reduction in end-to-end
delay and loss for the enhanced bi-modal NLMS algorithm.

2. Playout Buffer Algorithms

Adaptive playout buffer algorithms react to changing net-
work conditions by dynamically adjusting the end-to-end
delay. Since audio packets are generated at regular inter-
vals, the received packets must be played out in a periodic
mannet. Playout delay adjustments made during periods
of silence are less likely to be perceived by users. There-
fore, the playout delay is adjusted on a per-talkspurt basis

- 997 -

by lengthening or shortening the silence between talkspurts.

The basic playout approach [2] is tc sel the playout time
p¥ of the first packet of talkspurt k to

pi=1ti+ D m

where t¥ and p¥ are the sender timestamp and playout time
respectively, of the first packet in talkspurt k and D¥ is the
total end-to-end delay for received packets in talkspurt k.

Subsequent packets in a talkspurt have the same total
end-to-end delay. The playout time for packet % in talkspurt
k can be calculated as an offset from the playout time of the
first packet in the talkspurt, namely

p¥ =pf + (tF - tf))

In a recent approach to adaptive playout, playout delay
adjustment is performed within talkspurts [3]. Individual
voice packets are scaled such that they are played oul just
in time for the predicted arrival time of the next packet.
A time-scale modification technique, based on the Wave-
form Similarity Overlap-Add (WSOLA) algorithm, is used
to modify the playout rate while preserving the voice pitch.
The degradation in perceptual quality due to scaling was
found to be inaudible {3]. Dynamically adjusting the play-
out time improves overall performance by reducing end-to-
end delay while keeping packet loss tolerable. The main
approaches to playout delay estimation are described here.

2.1 Autoregressive (AR) Estimate-Based Algorithms

The basic playout algorithm uses an autoregressive (AR)
estimate to compute the network delay and jitter [2]. The
estimates for the average network delay, d; and variation in
network delay, ¥; are given by

(L‘ = (]!Ci,'_l + (1 - a)'n,i 3)

B = ady_1 + (1 — @)ld; — 4)

where ai,- is the autoregressive estimate of the packet delays,
1 is the variation in network delay, n; is the network delay
incurred by the i-th packet and o is a weighting factor used

to control the adaptation rate of the algorithm.
The total end-to-end delay, [J; is computed as

D; = d; + {9 (5)

where 3 is a safety factor used to moderate the trade-
off between end-to-end delay and packet “loss™ rate. A
higher value of 3 results in a lower loss rate as more pack-
ets arrive in time, however the total end-to-end delay in-
creases. 0.998002 and 4.0 are suggested for o and 3, re-
spectively [2]. While the AR estimates of d; and ©; are up-
dated for each packet, D* is only set to I; at the beginning
of a new talkspurt.

A second algorithm uses two different values for «, one
for increasing network delays and the other for decreasing
network delays [2]. Minor changes in the value of « can
greatly impact the tradeoff between packet loss and total

120

—— Acthial Network Delay, n
—— NLMS Predicted Delay, dl
-~ Total End-to-End Delay, I:;

[+:]

Delay (ms)

%650 5660 5670 5680 5680 5700
Packet Number

Fig.2 NLMS Algorithm

end-to-end delay. The value of o determines how rapidly
the AR delay estimate adapts to fluctuations in network de-
lay. A modification to the basic algorithm adaptively adjusts
¢ to an optimal value for the specified loss rate [4].

2.2 Statistically-Based Algorithms

Statistically-based approaches use the statistics of past de-
lays to compute the current playout delay. Network delays
for the past w packets are stored and a playout delay is se-
lected such that a chosen percentage of packets would have
arrived in time [3, 5]. Only the delays of the past talkspurt
are used in [6]. Another approach plots all previous de-
lay values in a histogram and applies an aging procedure to
gradually reduce the impact of older packet delays [7].

2.3 Adaptive Filter-Based Algorithms

Instead of reacting to network fluctuations, a novel ap-
proach 10 adaptive playout aims to predict the network de-
lay [1]. An accurate prediction of the network delay can
rapidiy track network changes and thus adjust the playout
delay more effectively, as shown in Fig. 2.

The basic adaptive filtering algorithm aims to minimize
the expected mean square error between the actual data and
the estimate [8]. Previously received data is passed through
a finite-impulse response (FIR) filier to compuie the current
estimate. The mean square error is then used to adjust the
tap weights of the adaptive filter.

The normalized least mean square (NLMS) algorithm is
used for the adaptive predictor [1]. The estimate for the
network delay, d; is computed to be

d; = win, (6)

where d; is the predicted network delay value for packet ,
w; isthe N x 1 vector of adaptive filter coefficients, ()7 is
the vector transpose, and n; is the IV x 1 vector containing
the past N network delays (up to and including the delay
for packet i — 1).

- 998 -

The filter tap weights, w;, are then updated after each
packet using the NLMS algorithm [8]

Witl = W; + _ll_iﬁlf—}v_ani& (7
where p is the sicp size, a is a small constant o prevent
division by zero, and e; = d} — n; is the estimation error.

The network delay variation and total end-to-end delay
are calculated as before using Eqgs. (4) and (5). The total
end-to-end delay is updated on a per-packet basis,

2.4 Spike Detection

The main playout buffer algorithms are not robust enough
to adapt delay estimates in the presence of spikes. A spike
is characterized by the sudden onset of a large increase in
network delay. Although subsequent packets usually expe-
rience declining network delays, the delay values are still
quite large. The spike ends when network delays return to
average values. Fig. 2 depicts a typical delay spike.

A spike-detection algorithm was first developed by Ram-
jee et al. [2] to adapt to such spikes. The playout algorithm
switches to an impulse or spike mode when the delay values
of the previous two packets differ by more than a threshold.
Within the spike, the network delays decline from the peak
spike value and the delay estimate depends only on the most
recent delay vatues. The slope of the delay spike is moni-
tored and as the delays flatien out, the slope reduces and
falls below a threshold, indicating the end of the spike. The
algorithm then reverts to normal mode and the delay esti-
mate is compuied using the AR estimate-based approach.
Other playout buffer algorithms also modify their delay es-
timates during spikes [3, 5, 6].

3. Enhanced NLMS (E-NLMS) Algorithm

A drawback of the NLMS predictor [1] is that it does not
detect delay spikes and therefore does not alter its delay pre-
diction during a spike. Fig. 2 illustrates the behaviour of the
NLMS algorithm in the presence of a delay spike. The first
packet in a delay spike arrives too late to be played out. The
NLMS predictor will react and subsequent predictions will
overestimate the ensuing delays. Thus the safety factor, 3
used to compute the playout delay can be significantly re-
duced for ensuing packets.

The E-NLMS algorithm takes advantage of this situation
by adding a spike-detection mode to the NLMS predictor.
In the normal mode of operation, the adaptive NLMS pre-
dictor functions as before [1]. A spike is detected when
either the previous packet was lost or the actual delay value
exceeds the predicted value by a threshold. Within the spike
mode, the playout delay is still based on the NLMS delay
prediction. Since the NLMS algorithm overestimates the
packet delay for packets immediately following a spike, the
value of the safety factor, § is reduced in computing the to-
tal end-to-end delay, D;. However, the D; in spike mode is

1201

—— Actual Natwork, n
—= NLMS End-to-End
—— E-NLMS End-to—End
80
w
E
=
o
]
Q
40
%650 5660 5670 5680 5690 5700

Packet Number

Fig.3 Enhanced NLMS (E-NLMS) Algorithm

not allowed to {all below its AR estimate. The spike ends
when the NLMS delay prediction no longer exceeds the ac-
tual delay. The D; is updated on a per-packet basis. Fig. 3
illustrates the behaviour of the enhanced bi-modal NLMS
in the presence of a delay spike. The pseudocode of the
algorithm is given below.

// Enhanced NLMS (E-NLMS) algorithm

T
di = w; ni;
T
Wil = w; + pf(n ng 4+ a)ngeg;

if (mode == SPIKE)
ARdelay; = cARdelay;—1 + (1 — a)ni—y;
v =oavi-1+ (1 — a)idi-1 —ni_1;
var factor; = B3/4 vi;
D; = d; + var factor;;
if {0 < ARdelay; + Bv:)
D; = ARdelayg + B
end
else // Normal mode
ARdelay; = aARdelay;—1 + (1 — a)ni—1;
v =avi-1 + (1 —a)|ldi-1 — ni-a;
var factor; = [u;;
D; = d; + var factor;;
end

[/ if end-to-end delay < network delay
if (D < m)
packel;=LOST;
else
packet;=IN.TIME;
end

if (ng > di)
mode = NORMAL;
end

- 999 -

if((ni > d; + 5v;) OR (packet;==LOST)}
mode = SFPIKE;
end

4. Evaluation and Results

The E-NLMS algorithm was evaluated in comparison to the
basic NLMS predictor for a set of delay traces. The basic
ping program was modified to continuously send a 40 byte
ICMP packet every 10 ms. A set of 18 traces, each trace
lasting for 1000 000 packets, was collected between nodes
in North America. The traces were celiected both during
the day and at night. While paths within the Internet may
not be symmetric, the round-trip delay gives a good idea of
the magnitude of the actual network delay and avoids the
problems of clock synchronization and clock skew. The E-
NLMS and NLMS predictors were aiso tested on traces of
one-way delays from [1].

10

NLMS
— E-NLMS

Packet Loss (%)

a5 50 55 60 65 70 75
End-to-End Packet Delay (ms)

Fig. 4 Trace 1: NLMS and E-NLMS Alg.

The experiments measured the average total end-to-end
delay and the late packet percentage for the delay traces.
The tradeoff between the average end-to-end delay and the
loss rate was illustrated by varying 5. The results are shown
in Figs. 4 and 5 for two sample traces, Trace 1 was taken be-
tween Montreal and Ottawa, while Trace 2 corresponds to
trace “c1” from [1}]. Reducing the delay overestimation dur-
ing spikes leads to an improvment in overall performance.
Both the average end-to-end delay and loss are reduced for
the proposed E-NLMS algorithm as compared to the origi-
nal NLMS predictor.

5, Conclusion

In this paper, an overview of the playout buffering problem
has been presented. Moreover, the main adaptive playout
buffering algorithms were reviewed. An existing NLMS
predictor was enhanced by adding a spike mode to rapidly
adjust to delay spikes. Within the spike mode, the en-
hanced NLMS algorithm makes use of the overestimate in

Packet Loss (%)
o

0 ,
295 300 305 310 315
End-to—End Packet Delay (ms)

Fig.5 Trace 2: NLMS and E-NLMS Alg.

the NLMS prediction and thus reduces the safety margin
when computing the total end-to-end delay. Simulations
on Internet traces compared the proposed E-NLMS algo-
rithm to the original NLMS playout algorithm. The results
demonstrate that the bi-modal algorithm improves the over-
all performance by reducing both the average end-to-end
delay and the loss rate. The E-NLMS algorithm is well-
suited for playout algorithms adjusting the delay on a per-
packet basis.

References

[1] P. DeLeon and C. Sreenan, “An adaptive predictor for media
playout buffering,” Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Processing (Phoenix, AZ), pp. 3097-3100, Mar. 1999.

[2] R.Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adap-
tive playout mechanisms for packetized audio applications
in wide-area networks,” Proc. IEEE Conf. Comp. Commun.
(IEEE-Infocom} (Toronto, ON), pp. 680688, June 1994,

[3] Y. J. Liang, N. Farber, and B. Giroed, “Adaptive playout
scheduling and loss concealment for voice communications
over IP networks,” IEEE Trans. Multimedia, 10 appear.

[4] A. Kansal and A. Karandikar, “Adaptive delay estimation for
low jitter audio over internet,” Proc. IEEE Global Telecom-
mun. Conf. (San Antonio, TX), vol. 4, pp. 25912595, Nov.
2001.

[5] S. B. Moon, J. Kurose, and D. Towsley, “Packet audio play-
out delay adjustment: Performance bounds and algorithms,”
ACM/Springer Multimedia Systems, vol. 6, pp. 17-28, Jan.
1998.

[6] J. Pinto and K. J. Christensen, “An algorithm for playout of
packet voice based on adaptive adjustment of talkspurt silence
periods,” Proc. IEEE Conf. Local Computer Networks (Low-
ell, MA), pp. 224-231, Oct. 1999.

{71 P. Agrawal, J.-C. Chen, and C. J. Sreenan, “Use of statistical
methods to reduce delays for media playback buffering,” Proc.
IEEE Int. Conf. Multimedia Computing and Systems (Austin,
TX), pp. 259263, June 1998,

[8]1 S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ:
Prentice Hall, third ed., 1996.

~ 1000 -

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

