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Abstract

The bandwidth for telephony is generally defined to be
from 300–3400 Hz. This bandwidth restriction has a no-
ticeable effect on speech quality. We present an algo-
rithm which recovers the missing highband parts from
telephone speech. We describe an MMSE estimator us-
ing hard/soft-classification to create the missing high-
band spectrum envelope. The classification is motivated
by acoustic phonetics: voiced vowels and consonants,
and unvoiced phonemes demonstrate different character-
istic spectra. The classification also captures gender dif-
ferences. A hard classification on phoneme character-
istic parameters, such as a voicing degree and a pitch
lag, reduces the MMSE of the highband spectrum en-
velope estimates. An estimator using HMM-based soft-
classification can further bring down the estimated high-
band spectrum distortion by taking the time evolution
of the spectra into consideration. Objective measures
(mean log-spectrum distortion) and spectrograms con-
firm the improvement noted in informal subjective tests.

1 Introduction

The International Telecommunication Union (ITU) in
G.712 specifies the standard frequency mask for public
telephone networks to include frequencies from 300–3400
Hz. The low frequencies are cut out to reduce interference
from power line induction and the high frequencies are
cut to avoid aliasing in sampled systems. The natural-
ness, the intelligibility of some syllables and the speaker
identity is compromised by the bandwidth restriction of
telephone speech. To substantially improve the voice
quality of the present networks, wideband speech can
be, approximately, reconstructed by a wideband recov-
ery system at the receiver side without the need for an
overlay wideband (with frequencies up to 7 kHz) network.

The principle of the wideband recovery system is
shown in schematic form in Fig. 1. Narrowband speech
is input to the wideband speech recovery system. For
our experimental work, we actually start off with wide-
band speech, from which we create the narrowband
speech for the recovery system. This allows us to
compare the actual wideband speech with the syn-
thetic wideband speech. The narrowband speech is
passed to three branches: the right one goes to spec-
trum envelope estimators, which generate both the high-
band spectrum envelope and highband gain estimates;
the middle branch produces the missing highband ex-
citation; the left branch is the narrowband speech.

The excitation signal multiplied by the gain excites
an LP synthesis filter (estimated spectrum envelope)
to reconstruct the missing highband components. Fi-
nally, the narrowband and the recovered highband sig-
nals are combined to form a wideband speech signal.
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Fig. 1 Wideband speech recovery from telephone speech

In our work we generate the highband excitation using a
bandpass modulated Gaussian noise (BP-MGN) [3]. We
have found this excitation when combined with actual
highband spectra generates a very high quality wideband
signal. The main challenge is how to estimate the high-
band spectrum envelope just from the telephone speech.
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In this work, we do not explicitly consider means to re-
generate the low frequency components (but see [3]).

The spectrum envelope of the missing highband com-
ponents can be reconstructed by a VQ codebook map-
ping or a statistical modelling approach [4],[7]. A statis-
tical Gaussian Mixture Model (GMM) of the wideband
speech spectrum parameters can also be used to estimate
the missing highband spectrum envelope [1]. The feasi-
bility of the wideband recovery scheme is based on the
assumption that the missing highband components are
statistically correlated, to a certain degree, with the nar-
rowband speech. The higher the correlation, the better
the highband reconstruction. We note that the highband
reconstruction needs to be realistic but not necessarily
the same as in the original wideband signal — the listener
does not have the original wideband signal for compar-
ison. We explore further statistical dependencies using
acoustic-phonetic hard/soft classification. The goal is to
reduce the spectrum distortion of the estimated high-
band components. To this end, we develop an MMSE
estimator based on hard/soft-classification. to restore
the missing highband spectrum envelope. The acoustic-
phonetic hard classification reduces the MMSE of the
highband spectrum envelope estimation. An estimator
using HMM-based soft-classification further reduces the
highband spectrum distortion.

2 Acoustic-Phonetics for Classification

Acoustic-phonetics describes distinctive waveforms, spec-
trum envelopes, pitch (fundamental frequency F0),
pitch gains and power properties of speech sounds, or
phonemes. There are 42 phonemes of American English,
including 5 unvoiced fricative phonemes, such as /s/, /f/,
the whisper, /h/, 2 affricatives, 4-voiced fricatives, 6 stop
phonemes, 11 vowels, 6 diphthongs, 4 semivowels, and 3
nasal consonant phonemes.

Typical spectrum envelopes of a voiced vowel /o/ (solid
line), a voiced explosive consonant /k/ (dotted line) and
an unvoiced fricative phoneme /s/ (dashed line) are il-
lustrated in Fig. F:phoneme.
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Fig. 2 Spectrum envelopes: voiced phoneme ’o’ (solid line);
unvoiced phoneme ’s’ (dashed line); voiced phoneme ’k’ (dot-
ted line)

We have classified the phonemes into 3 groups: un-
voiced, voiced and mixed phoneme groups, based on their
highband vs. lowband energy ratio and voicing degree β,
which represents the pitch prediction filter gain [5]. In

this paper we divide phonemes into three other groups
by the voicing degree β and the pitch frequency. This
groups correspond (roughly) to voiced female speech,
voiced male speech, and unvoiced male or female speech.
The pitch F0 differentiates female speakers from male
speakers. An average value F0 for males is about 132 Hz
while F0 for females is about 233 Hz. We have found that
the statistical features of the spectrum envelopes of male
and female voiced phonemes are quite different, although
there is little discrepancy for unvoiced phonemes. We
use the Line-Spectrum-Frequency (LSF) representation
for the speech spectrum. Ten LSFs are used to represent
the highband spectrum envelope. As an example, the
histograms of the 8th highband LSF for 680 utterances
by males (11 speakers) and 718 utterances by females (12
speakers) are depicted in Fig 3. The use of classified sta-
tistical characteristics can be beneficial in estimating the
missing highband spectrum envelope, as we will be seen
in the next section.
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Fig. 3 The histograms of the 8th highband LSF: voiced
phonemes, female talkers (top); voiced phonemes, male talkers
(second); unvoiced phonemes, female talkers (third), unvoiced
phonemes, male talkers (bottom).

3 The Highband Estimation Using
Classified GMMs

The probability density function pdf of the LSF random
vectors can be modelled by a mixture of Gaussian pdfs
(a Gaussian Mixture Model, GMM). The GMM pdf is a



weighted sum of M D-dimensional joint Gaussian density
distributions.

pZ(z|α, µ,Σ) =
L∑

i=1

αibi(z|µi,Σi), (1)

where L is the number of individual Gaussian compo-
nents, αi, i = 1, . . . , L are the (positive) mixture weights,
and Z is a D-dimensional random vector. Each density
is a D-variate Gaussian PDF of the form,

bi(z|µi,Σi) =
1

(2π)D/2|Σi|1/2
e

1
2 (z−µi)

T Σ−1
i (z−µi),

(2)
with mean vector µi, and covariance matrix Σi. The
GMM is defined by the mean vectors, the covariance ma-
trices and the mixture weights for the Gaussian com-
ponents. The parameter set, {α, µ,Σ} can be estimated
by the maximum likelihood (ML) method. The ML algo-
rithm finds the GMM parameters with maximum proba-
bility density for the given training data. We employ the
popular expectation-maximization (EM) algorithm [6] to
determine the set of GMM parameters iteratively.

The training data of wideband speech are divided into
three subsets: voiced male (25,407 frames); voiced fe-
male (35,808 frames); unvoiced male and female (82,113
frames). They come from a speech database with a total
of 143,328 frames each of 20 ms. Since male pitch varies
from 80–200 Hz and female pitch ranges from 133–390
Hz, we set the threshold at 160 Hz. The error proba-
bility εpit for the pitch classification, is 0.097. This is
the probability of mis-classifying the gender. This value
of error does not substantially affect the estimation er-
ror. Thereby, we find three sets of GMM parameters
representing three pdfs: pfZ (αf , µf ,Σf ) for voiced fe-
male frames; pmZ (αm, µm,Σm) for voiced male frames;
puvZ (αuv, µuv,Σuv) for unvoiced frames.

Let the random vector xf be the vector of the narrow-
band LSF vector of a voiced female frame. The vector
yf is the highband LSF vector of a voiced female frame.
For a given estimate, ŷf , the mean-square error is

ε2 =

∫
Ωyf

||yf − ŷf ||2pfY |X(yf |xf ) dyf . (3)

The estimate which minimizes the error is found from
∂ε2/∂ŷf = 0,

ŷf =

∫
Ωyf

yfpfY |X(yf |xf ) dyf∫
Ωyf

pfY |X(yf |xf ) dyf

=

∑L
i=1 αibi(xf )µiyf∑L

j=1 αjbj(xf )
,

(4)
where µiyf

is the mean vector of the female highband
LSFs of the i-th Gaussian component. The estimate of
the highband LSF vector is the expectation of the high-
band mixture mean vectors, given the narrowband LSF
vector.

The estimates for the highband male and unvoiced
phoneme spectrum envelopes are similar in form.

We have measured the RMS-log spectrum distortion
(SD) in the missing highband (3.5–7 kHz) to evaluate
our scheme. The SD is defined as

SD2 =
1

π

∫ ωh

ωl

20 log10




g

|Ahb(ejω)|
ggmm

|Agmm(ejω)|




2

dω, (5)

where ωl and ωh are the cut-off frequencies of the missing
band; g and ggmm are the real modulation gain and the
GMM-estimated modulation gain; |Ahb(ejω)| is the mag-
nitude of the inverse filter of the highband signal of the
wideband speech; |Agmm(ejω)| is the estimated highband
magnitude of response using the GMM parameters.

Table 1 shows the measured mean SD and the number
of outliers. We have also compared to the mean SD of
highband estimation using a non-classified GMM. These
are listed in the last column of the table. The mean SD
improvement is about 0.6 dB for voiced frames. The 10
dB outliers for voiced speech are reduced. There is no
improvement for unvoiced frames. Although the RMS-
LogSD values in Table 1 are much larger than what is
considered to be the threshold of transparency for nar-
rowband spectra (1 dB), our listening tests show that a
RMS-LogSD of about 6.0 dB still can deliver high quality
of reconstructed wideband speech.

Table 1 RMS-LogSD in (dB)

Voiced Unvoiced V/UV Not classified

Mean 5.58 6.22 5.96 6.20
Outliers 10 dB 6.5% 13.4% 10.6% 13.1%
Outliers 15 dB 0.0% 0.0% 0.0% 1.2%

4 Soft-Classification Using HMM
We consider above-mentioned classification using the
pitch and voicing degree as a hard classification. In order
to further push down the estimation error, we apply soft-
classification using a Hidden Markov Model (HMM) of
the missing highband. An HMM is an embedded stochas-
tic process with an underlying state Markov stochastic
process that is not observable (hidden), but which can
only be observed through another set of stationary pro-
cess that produces the sequence of observations. We in-
terpret the state as a phoneme group and the observ-
able sequence as spectrum envelope parameters, LSFs,
voicing degree and pitch values, etc. In our application,
the true state, or the group, is not directly observable.
We can only resolve the probability of the state, given
an observed parameters and HMM parameters. Thus,
we consider it as a soft-classification to distinguish from
the hard-classification. The HMM also tracks the time-
evolution of the spectral envelopes.

An HMM is determined by the five parameters: the
state transition probability matrix A = {ajk}, where ajk

stands for the state transition probability from the state
Sj(m) at time instant m to the state Sk(m + 1) at time
instant m+1, j, k = 1, . . . , M ; the initial state probability
vector π = πj at m = 1; the GMM parameter set of L
matrices of each state B = {αij , µij ,Σij}, where i =
1, . . . , L, j = 1, . . . , M ; the total number of states is M .

For convenience, a compact notation is introduced to
indicate the complete parameter set of the HMM.

λ = {A, B, π}. (6)

A joint prior probability or pdf of the ob-
served parameter sequence up to time m, X(m) =
x(1), . . . , x(m), which ends up at j-state, Sj(m),
γj(m) = p(Sj(m),X(m)), is introduced to calculate the



conditional pdf p(Sj(m)|X(m)). The joint prior pdf,
γj(m) at time m, a classical problem of HMM, can be
recursively solved as

p(Sj(m),X(m)) =
M∑

k=1

γj(m−1)akjp(x(m)|Sj(m)). (7)

Eq. (7) can be verified by the definition of the con-
ditional probability and the fundamental assumption of
independence between the successive observations. We
can recursively calculate the joint prior pdf γj(m) with
the initial condition γj(1) = πjp(x(1)|Sj(1) by Eq. (7).
The estimated highband spectrum envelope ŷ can be de-
termined by a similar equation as Eq. (4) based on the
MMSE estimation criterion. Notice that the conditional
vector x is replaced by the past observation sequence X .
We drop the time index m for simplicity,

ŷ =

∫
Ωy

ypY |X(y|X) dy (8)

pY |X(y|X) =
M∑

j=1

pY |X(y|Sj)p(Sj |X), (9)

where p(Sj |X) = p(Sj , X)/
∑M

j=1 p(Sj, X). Since∫
Ωy

yp(y|Sj)dy = Cj is the VQ codevector of the j-

state, the estimated highband envelope

ŷ(m) =

∑M
j=1 Cjγj(m)∑M

j=1 γj(m)
. (10)

The estimate in Eq. (10) depends on the joint prior pdf
γj(m) and VQ code vectors of all states, given an obser-
vation sequence and HMM.

We have trained the HMM parameters λ using the
Baum-Welch ML iterative algorithm [9] and the VQ code-
book by the well-known General Max-LLoyd method
[10]. A small VQ codebook was used in the experiments,
M = 8.

We used the Eq. (10) to estimate highband spectrum
envelope and compared the results to hard-classified es-
timation. The spectrograms (Fig. 4) show that hard-
and soft-classification give reasonbable highband compo-
nents. The soft-classification gives a slightly richer high-
band. Listening shows that the highband spectrum esti-
mation using both the hard and soft classification gives
wideband speech which is much preferred to the original
narrowband speech.
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