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Abstract

A novel perceptual postfilter is introduced. For each frame, the
filter gains, z, are estimated given a vector, y, of the quantized
LSFs and the long-term prediction gain of the corresponding
frame. The proposed perceptual postfilter is derived from an
optimal MMSE estimator, i.e. the estimated gain vector is ẑ =
E{z|y}. The MMSE estimator is based on the conditional pdf
of z given y, which is computed from the joint pdf modelled by
a GMM. The proposed perceptual postfilter improves the speech
naturalness comparing with the conventional adaptive postfilter,
while maintaining the property of being an “add-on” postfilter
without modification to the current encoder.

1 Introduction

Adaptive postfilters [1] have been widely applied in current
Linear Prediction Analysis-by-Synthesis (LPAS) speech coders.
Conventional postfiltering improves the decoded speech quality
using the information available at the decoder, and is empiri-
cally designed based on aspects of human perception. As re-
search furthers in modelling of the human auditory system, bet-
ter psychoacoustic models [2, 3] have been proposed and ap-
plied in speech and audio processing, especially in audio cod-
ing. However, only a few improvements (for instance, [4, 5])
have been made to adaptive postfilters despite our better under-
standing of the human auditory system.

A speech codec usually operates on a frame-by-frame basis.
When we have access to the clean speech and its decoded ver-
sion from a speech codec, a perceptual postfilter can be con-
structed based on perceptual properties. The perceptual filter
gains can be derived from each processing frame and applied
to the decoded speech to improve the speech quality. However,
in practice we do not have the information about the percep-
tual postfilter gains at the decoder if they are not sent as side
information. In this paper, we focus on the estimation of the
perceptual postfilter gains without additional side information.

Assume a given speech frame is coded by a LPAS speech
coder, the decoder retrieves the quantized linear prediction (LP)
coefficients. The LP coefficients represent the envelope of the
short-time power spectrum which is very important for both the
quality and intelligibility of coded speech. The perceptual post-
filter gains are calculated for the corresponding frame. Since
the open-loop prediction gain of the long-term prediction (LTP)
in speech signals indicates the degree of voicing of the speech,
we also calculate the LTP gain of this frame. We take the LP
coefficients and the LTP gain as an “input” vector, and the per-
ceptual postfilter gains as a “target” vector. A feature vector is
constructed from “input” and “target” vectors. In order to find a
Minimum Mean Square Error (MMSE) estimate of the “target”
vector, a priori information of the joint probability density func-

tion (
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pdf) of the feature vector is required. A Gaussian Mixture
l (GMM) is used to model the joint density.
discuss the perceptual postfilter in Section 2. In Section

present the MMSE estimator and the GMM. Simulation
s are given in Section 4.

2 Perceptual Postfilter

speech coding models the human speech production by
ng a time-varying LP all-pole filter by an excitation signal
he coder attempts to minimize a perceptually weighted

signal (exploiting masking properties). Both the quan-
information about the excitation and the LP coefficients
ansmitted to the receiver. The LP coefficients are usually
rted to Line Spectral Frequencies (LSFs) before quantiza-
nd transmission.
sking is an important phenomenon of our auditory sys-

It means a sound is inaudible in the presence of a stronger
. A masking threshold from psychoacoustics measures the
nt of the allowable distortion. For speech, noise in spec-
alleys is more sensitive than that in spectral peaks accord-

empirical results [1]. Perceptual weighting tries to shape
ectrum of the coding noise following the speech spectrum
e extent to suppress noise in spectral valleys. However,

ptual weighting alone is not enough to make the coding
inaudible at low encoding rates. In order to make better

f masking, an adaptive postfilter [1] is commonly used to
the coding noise in the spectral valleys. The conventional

ive postfilter is the combination of a pitch postfilter and a
nt postfilter to reduce the coding noise in the spectral val-
gions.1 From the decoded information, an adaptive post-
can be easily built and can act as an independent add-on
onent to the system. The conventional adaptive postfilter
ed on empirical results for low bit rate coders [1]: a) The
ing threshold follows to some extent the spectral peaks and
s of speech spectrum; b) the noise shaping by perceptual
ting filter at encoder makes the coding noise fall below the

ing threshold around the spectral peaks but appear above
asking threshold in the valleys.
plications of masking models usually involve calculating a
ing threshold and arranging the coding noise to below the
ing threshold. The frequency resolution of our human ear
resented by critical bands, which are nonlinearly spaced
frequency scale (Hz). One Bark spans the width of a criti-

nd. The excitation pattern, which is obtained by frequency
me domain spreading, predicts the physical activity of hair
along the basilar membrane in the ear. A masking thresh-

derived by weighting the excitation intensity. Different

eighting at the encoder (where the clean speech signal is available) shapes
ing noise. Postfiltering at the decoder affects both the speech and the cod-
se.



psychoacoustic models may handle the orders and the function
expressions of time and frequency domain spreading differently
[2, 3].

In psychoacoustic modelling, a neural excitation called loud-
ness is assumed to directly affect perceived strength. A loudness
distribution is predicted from the excitation intensity by a non-
linear transformation. Recent research has considered the loud-
ness model instead of the masking model [7], however, both
loudness and masking are directly connected with excitation by
operations independent of the signal level. The excitation pat-
tern model is also considered as a loudness representation. Lam
and Stewart [8] exploited the excitation pattern model to de-
rive a generalized perceptual audio filter in low rate audio cod-
ing. Their filter reduces the audible coding noise by trying to
“equalize” the excitation pattern representation of the original
signal and the coded signal. Let us denote the original signal as
s(n, i), the coded signal as y(n, i), and the perceptually filtered
y(n, i) as z(n, i). Their corresponding spectral components are
Sp(k, i), Yp(k, i) and Zp(k, i). The excitation pattern values
are SE(z, i), YE(z, i) and ZE(z, i), respectively. Here, n is
the time domain index, i is the frame index of the signal, k is
the frequency domain index, and z is the critical band index.
By restoring the excitation patterns, they suppressed the audi-
ble quantization noise in low bit rate wideband audio coding
[8]

ZE(z, i) = SE(z, i), 1 ≤ z ≤ B (1)
where B is the total number of critical bands in the perceptual
domain. The gain of the perceptual filter is assumed to be con-
stant within the same critical band, and denoted by H(z, i). The
filtered signal in each critical band is given by

Zp(k, i) = H(z, i)Yp(k, i), 1 ≤ z ≤ B,k ∈ [bl(z), bh(z)]
(2)

where bl(z) is the lower boundary of critical band z, and bh(z)
is the upper boundary of critical band z. The perceptual filter
gains are derived from Eq. (1) with a simplified psychoacoustic
model. In the implementation, these filter gains were sent as
side information to enhance the decoded signal.

This perceptual filter exploits the properties of the psychoa-
coustic model which it is based on, and can be directly applied
to the frequency domain of the decoded signal to suppress the
perceptible noise. It gives us a new perspective on adaptive
postfiltering. We build a perceptual postfilter for speech coders
based on the ideas of Lam and Stewart [8], but with the estima-
tion done entirely at the decoder.

The psychoacoustic model used by Lam and Stewart [8] is
an invertible auditory model (ignoring level dependant effects
on the spreading functions and time-domain spreading). In this
case, the operation from the critical band intensity to the ex-
citation intensity is unnecessary. The gains of the perceptual
filter in [8] can be found directly as the ratio of the critical band
intensity of the original signal to that of the coded signal. If
the critical band intensity of the coded signal is adjusted to be
equal to the same level of the original signal, the filtered signal
will have the same loudness representation as that of the orig-
inal signal. This motivates us to build our perceptual postfilter
by equalizing the energy in perceptual domain

ZB(z, i) = SB(z, i), 1 ≤ z ≤ B (3)

where SB(z, i) and ZB(z, i) are the critical band intensity of
the original signal and the perceptually filtered signal, respec-
tively. By using the grouping as in Johnston’s model [2], the
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y in each critical band of s(n, i) is summed to give the
al band spectrum SB(z, i):

SB(z, i) =

bh(z)�

k=bl(z)

Sp(k, i), 1 ≤ z ≤ B (4)

the grouping to Eq. (2) and combining with Eq. (3), our
erceptual postfilter has the expression

H(z, i) = SB(z, i)/YB(z, i), 1 ≤ z ≤ B (5)

YB(z, i) is the critical band spectrum of the coded sig-

Estimation of The Perceptual Filter Gains
MSE Estimation

ant a perceptual postfilter to act as a “true” add-on compo-
t the receiver without increasing the bit rate of the original
h coder. We want to make use the information available
decoder to derive the perceptual postfilter. An MMSE es-

or can be constructed to estimate the perceptual postfilter
. Assume a d-dimensional feature vector s is composed of
imensional “input” subvector, y, of some information at
coder and an l-dimensional “target” subvector, z, of the

ptual postfilter gains, i.e. s = [y; z]. The MMSE estima-
ves the estimate of z by the conditional expectation

ẑ = E{z|y} (6)

use the LTP gain from the decoded speech and the quan-
LSFs as the subvector y in the feature vector. Knowing
int pdf of the feature vector is essential in MMSE estima-
6), we use a mixture of Gaussian components to model the

aussian Mixture Models

M is commonly used to approximate a pdf with rela-
small number of parameters. Its ability to represent gen-

peech parameters (spectral shapes) by sums of Gaussian
onents makes it popular in speech recognition and speaker
fication [9]. GMMs are also used for vector quantization
Fs [10]. Qian and Kabal [11] used GMMs for bandwidth
sion by estimating the missing high band information from
w band LSFs.
approximate the joint pdf of the feature vector s by a
with M Gaussian components [10]

ps|Θ(s|Θ) =

M�

i=1

αi b(s|θi) (7)

Θ = {α1, · · · , αM , θ1, · · · , θM}. (8)

b(s|θi) is a multivariate Gaussian density parameterized
= {µi,Σi} with mean vectors µi and covariance matri-
i. The value αi denotes the a priori probability of the ith
re component b(s|θi) with

�M
i=1 αi = 1.

e parameter set Θ can be estimated by the maximum like-
d (ML) method. Expectation-Maximization (EM) algo-

is a widely used approach for ML estimation in cases
a closed-form analytical expression for the optimal pa-

ers is hard to derive. EM is an iterative algorithm where
h iteration over a given database a monotonic increase in
g-likelihood, L, is guaranteed [10], i.e., L(Θ(k+1)) ≥
k)), where Θ(k) is the value of the parameter set Θ at

ion k.



We choose diagonal covariance matrices in GMM rather than
full covariance matrices to reduce the parameters to be esti-
mated. The number of parameters to be estimated during train-
ing is M(d+d(d+1)/2+1) for full covariance Gaussians, and
M(2d + 1) for diagonal covariance Gaussians. The larger the
number of parameters, the greater the possibility to describe the
fine structure of the underlying data distribution. On the other
hand, with a high degree of freedom in the modelling, there is
an risk of overfit.

3.3 MMSE Estimation of The Perceptual Postfilter Using
GMMs

While using the MMSE estimator of Eq. (6) with a GMM pdf,
we need the conditional pdf of “target” postfilter gain vector
z given the “input” vector y. The individual Gaussian density
parameter θi can be written as follows

µi =

�
µyi

µzi

�
(9)

Σi =

�
Σyyi Σyzi

Σzyi Σzzi

�
(10)

The conditional pdf and any marginal pdf of jointly Gaussian
random variables are Gaussian densities [12]. The joint Gaus-
sian pdf components b(s|θi) = b(s|µi,Σi) in Eq. (7) can be
factored into a conditional Gaussian pdf b(z|µz|yi

,Σz|yi
) and

a marginal Gaussian pdf b(y|µyi
,Σyyi)

b(s|µi,Σi) = b(z|µz|yi
,Σz|yi

) b(y|µyi
,Σyyi) (11)

Therefore, the conditional pdf of y and z is expressed in terms
of a GMM

p(z|y) =

M�
i=1

αi b(s|µi,Σi)

M�
k=1

αk b(y|µyk
,Σyyk)

=

M�
i=1

αi b(z|µz|yi
,Σz|yi

) b(y|µyi
, Σyyi)

M�
k=1

αk b(y|µyk
,Σyyk)

(12a)

=

M�
i=1

hi(y) b(z|µz|yi
,Σz|yi

). (12b)

From [12]

µz|yi
= µzi + Σyzi(Σyyi)

−1(y − µyi
) (13)

Σz|yi
= Σzzi − Σyzi(Σyyi)

−1Σzyi (14)

and

hi(y) =
αi b(y|µyi

, Σyyi)

M�
k=1

αk b(y|µyk
,Σyyk)

(15)

A MMSE estimate of z is derived with Eqs. (6), (12b) and
(13)

ẑ =

M�
i=1

hi(y)µz|yi
(16)

When diagonal covariance matrices are used for Σi, the MMSE
estimator is reduced to

ẑ =

M�
i=1

hi(y)µzi (17)
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4 Experimental Results

experiments, all speech is sampled at 8 kHz with 16-
M resolution. The database is composed of speech of 23

ers (12 females and 11 males). One section of the database
10 female and 9 male speech is used for GMM training,
e other 2 females and 2 males are used for performance

ation. We do the experiments with the ITU-T G.723.1
h codec [6] at rate of 5.3 kbps. The ITU-T G.723.1 speech
operates on frames of 240 samples. Each frame is di-
into four subframes of 60 samples each. For each sub-

, 10th order LP analysis is used on a Hamming windowed
amples centered on the subframe. The LP coefficients for
st subframe are converted to LSFs and quantized. The
tion signal is coded with pitch period and algebraic-code-
tion (ACELP) for each subframe.

r training the GMM, the ITU-T G.723.1 speech coder en-
the corresponding information about excitation and LSFs,
wn in the top part of Fig. 1. A feature vector of dimen-
8 for GMM training is composed of a 10 quantized LSFs,
prediction gain and 17 bark-scale perceptual postfilter

. In each frame, the block of 180 samples centered on the
ubframe is used to generate a training vector. For each
ed block, the LSFs are retrieved and an LTP gain is cal-
d. To get the perceptual postfilter gains, a sine-squared
w is applied to the first 60 and the last 60 samples of the

ssing blocks of the original and decoded speech as shown
. 2. An FFT of length 256 are used on each windowed
. GMM with diagonal covariance matrices is trained at
coder as indicated in Fig. 1. The training set consists of
55 vectors.
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System Diagrams. Top: GMM training at the encoder; Bottom:
tual postfiltering by MMSE estimation at the decoder.

r proposed perceptual postfilter works at the decoder end,
wn in the bottom part of Fig. 1. The postfiltering is per-
d on windowed blocks of 180 samples, with 60 sample
ps, see Fig. 2. The same window and length of FFT

sed as in GMM training. For each frame of the decoded
h, a MMSE estimate gives the postfilter gains for the block
r on the last subframe by the decoded LSFs and the calcu-
LTP gain, while the postfilter gains from the block cen-
on the second subframe are given by the mean of the esti-
postfilter gains for the previous and the next blocks. To
the correlation of “input” and “target” vectors, Table 1



Frame N Frame N+1

Subframe

Fig. 2 Windowing for the training (upper plot) and perceptual postfil-
tering (lower plot).

gives the mutual information from GMM pdf with M=16, 32,
64, and 128 mixture components. It shows that the “input” and
“target” are correlated, and more mixtures should give better
estimates. We use M=128 for our experiments.

Table 1 Mutual information.

Gaussian Mixtures Mutual Information

16 2.53
32 2.88
64 3.12

128 3.33

Fig. 3 shows the spectrograms of clean speech, ITU-T
G.723.1 coded speech with standard postfiltering, and ITU-T
G.723.1 coded speech with the new perceptual postfilter, re-
spectively. Low bit rate coding emphasizes the high energy
parts (generally formants at low frequencies) and loses some
naturalness at high frequencies. From Fig. 3, it can be seen that
the perceptual postfilter recovers some of this loss. Informal
listening test shows the proposed postfilter gives more natural
speech than the conventional postfilter, while maintaining intel-
ligibility.

5 Conclusions

A novel perceptual postfilter for low bit-rate LPAS speech
coders has been introduced in this paper. The LSFs and LTP
gains from the decoder are used to estimate the perceptual post-
filter gains by a MMSE estimator using a GMM. The proposed
postfilter is perceptually based and is an add-on part at the re-
ceiver just as for a conventional adaptive postfilter. Informal
listening tests show an improved speech quality with a more
natural sound.
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