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Abstract
A voice quality prediction method based on Gaussian

mixture models (GMMs) is improved by constructing a

feature selection algorithm to provide the best GMM-

based prediction quality. The proposed sequential se-

lection algorithm performs N -survivor search, allowing

for trading between design complexity and performance.

Simulation shows that predictors designed using the pro-

posed algorithm outperform two benchmark selection al-

gorithms. Performance improvements over the ITU-T

P.862 PESQ standard are also attained.

1. Introduction
In [1], a novel method of speech quality estimation based

on Gaussian mixture models (GMMs) is proposed. First,

perceptual features are extracted from the distortion sur-

face between an original speech signal and its degraded

counterpart. Salient features are then selected using two

statistical data mining methods, multivariate adaptive re-

gression splines (MARS) [2] and classification and re-

gression trees (CART) [3]. Lastly, features are mapped to

a mean opinion score (MOS) [4] by means of a minimum

mean squared error (MMSE) GMM-based estimator.

When designing GMM-based estimators, the features

selected by CART or MARS may not lead to high esti-

mation accuracy as the selection process is optimized for

CART/MARS regressors. Indeed, in [1], diagonal covari-

ance GMMs are shown to provide only modest perfor-

mance and this is attributed to inherent characteristics of

the features selected by CART or MARS. Here, we im-

prove feature selection by proposing a feature selection

algorithm whose selection criterion is the quality of the

GMM-based estimator.

Simulation results show that the GMM-based es-

timators designed using the proposed algorithm bet-

ter predict voice quality when compared to estimators

trained on features selected by CART or MARS. Further-

more, an experiment performed on unseen data demon-

strates that performance improvement over the Interna-

tional Telecommunications Union ITU-T P.862 standard,

also known as Perceptual Evaluation of Speech Quality

(PESQ) [5], is attained.

2.
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goal in MMSE voice quality prediction is to find a

f features, represented by the feature vector x, and

ression function f̂(x) that maps features to a pre-

d MOS. Both x and f̂(x) are chosen to minimize the

squared error, εMSE , between f̂(x) and the subjec-

OS (y), viz εMSE = E[(y − f̂(x))2]. It is known

MSE is minimized when f̂(x) = E[y|x], the condi-

l expectation of the subjective MOS, given x. Before

troduce GMM-based estimators, a brief description

Ms is given for the sake of notation.

Gaussian mixture density is a weighted sum of M
onent densities

p(u|λ) =
M∑

i=1

αi.bi(u) (1)

e αi ≥ 0, i = 1, ..., M are the mixture weights, with

1 αi = 1, bi(u), i = 1, ...,M are the K-variate

sian densities with mean vector μi and covariance

x Σi. The Gaussian mixture density is parameter-

by the elements λi = [μi, Σi, αi] which are esti-

d via the EM algorithm [6]. We use the k-means
ithm to initialize the GMM parameters.

he GMM-based estimators rely on modelling the

density of u = [y,x]T with (1). Given the GMM

eters, the MMSE regression function is [7]

y|x] =
M∑

i=1

hi(x)[μy
i + Σyx

i (Σxx
i )−1(x − μx

j )]. (2)

above estimator is a weighted sum of linear mod-
here the weight hi(x) is the probability that the ith

sian component generated the vector x and given by

) =

αi

|Σxx
i |1/2

e − 1
2 (x−μx

i )T (Σxx
i )−1(x−μx

i )

M∑

k=1

αk

|Σxx
k |1/2

e − 1
2 (x−μx

k)T (Σxx
k )−1(x−μx

k)

. (3)

ext, a description of the proposed feature selection

ithm is given.



2.2. Feature Selection

The proposed algorithm starts with an empty feature set

and features from a candidate feature set are added to the

set progressively. To determine which candidate feature

to add, the algorithm tentatively adds to the current fea-

ture set one feature that is not already selected to form

an augmented feature set. The joint density of the target

variable and the augmented feature set is modelled with a

GMM, with model parameters λ estimated using the EM

algorithm. The accuracy of the GMM estimator using λ
is then calculated. The above is repeated for every can-

didate feature and corresponding GMM. The candidate

feature that produces the least regression error is admit-

ted into the current feature set to form an updated feature

set. The algorithm stops when the desired number of fea-

tures has been selected. Note that the proposed algorithm

progressively constructs f̂ as features are being selected.

It is worth mentioning that for each candidate feature

the best number of Gaussian components in (1) can be

determined by checking different values of M . Using the

notation “EM” to stand for GMM parameter estimation

via the EM algorithm, f̂k for the mapping function with

k variables, and D for the desired number of features,

the algorithm can be summarized as follows:

(0) Let I = {1, . . . , n}, S = ∅, k = 1;

(1) λi ← EM(y, S ∪ {xi}), ∀i ∈ I;

(2) ik = arg min
i∈I

∑
j(yj − f̂k(S ∪ {xi}|λi))2;

(3) I ← I − {ik}, S ← S ∪ {xik
}, k ← k + 1.

(4) Go to step 1, stop if k > D.

2.3. N -Survivor Search

With a corresponding increase in computational com-

plexity, the algorithm can perform sequential multiple-

survivor search. So far, the algorithm description has fo-

cused on one survivor, i.e., the one feature variable that

minimizes estimation error. In N -survivor search, at each

iteration, the N features that assume the top-N ranks in

minimizing the estimation error are kept as “survivors.”

A tradeoff between complexity and performance can be

adjusted by tuning the parameter N .

If the ultimate goal is to find D features out of n can-

didate features, then N survivors are kept in iterations

i = 1, 2, . . . , D − 1. At iteration i = 1, the algorithm se-

lects the N best features out of the n available candidates.

At iterations 1 < i < D the N best ranked features, out

of the N(n − i + 1) possible feature combinations, are

kept. Lastly, at iteration i = D, the single best feature is

kept. The last best feature and its ancestor features con-

stitute the set of features selected by the search process.

The next section is dedicated to testing the accuracy

of the proposed algorithm. Comparisons with GMM es-

timators trained on features selected by CART or MARS

are carried out in the first experiment. Comparisons with
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unseen data is described in the third experiment.

3. Performance Results
GMM for speech quality estimation is built on per-

al feature variables obtained by classifying percep-

istortions under a variety of contexts to form a pool

9 candidate features [1]. Thirteen MOS labelled

h databases are used, containing a total of 5864

h files. We use 10-fold cross validation to pro-

robustness in the performance evaluation. Estima-

performance is assessed by the correlation (R) be-

n subjective MOS and estimated MOS and by root-

-square MOS error (RMSE).

Experiment I

first experiment compares GMM estimators trained

atures selected by our proposed feature selection

ithm to estimators trained on features selected by

T or MARS. For this experiment we check all per-

ble values of M at each iteration. To allow compar-

with [1] we search for D = 5 features. We restrict

5 in order to maintain an adequate training ratio

between the number of parameters that have to be

ated and the total number of files in the training set)

for full covariance matrices and 81 for diagonal ma-

.

et Mi be the number of Gaussian components cho-

in iteration i of the proposed algorithm, it was

that the following combinations were often se-

d throughout the ten cross validation trials:

Diagonal: M1 = 4, M2 = M3 = M4 = M5 = 5;

Full: M1 = 2, M2 = 3, M3 = M4 = 4, M5 = 5.

that over the five algorithm iterations (D=5) used

is experiment the number of Gaussian components

r increases or stays the same as the algorithm pro-

es. As expected, full covariance GMMs use fewer

sian components at the beginning, and the number

mponents increases with the number of features.

igures 1 (a) and (b) compare performance figures

5-component GMM estimator designed using the

sed algorithm to that of an estimator designed us-

ART or MARS, for diagonal and full covariance

ces, respectively. Note that the proposed algorithm

ves higher R and lower RMSE for all ten cross val-

n trials.

ore precisely, if the percentage improvement in R
fined as

% ↑ R =
Rnew − Rold

1 − Rold
× 100% (4)

e Rnew and Rold are the correlation obtained using

roposed method and using CART or MARS, respec-



tively; diagonal GMM estimators incur an average im-

provement in R of 26.95% and 38.94 % when compared

to CART and MARS, respectively. An average improve-

ment of 31.10% and 20.01% is achieved for full GMM es-

timators. In turn, diagonal predictors trained on the pro-

posed algorithm reduce RMSE by an average of 13.93%

and 24.16% when compared to CART and MARS, re-

spectively. An average decrease of 19.07% and 11.96%

is obtained for full covariance GMMs.

If multiple survivor search is carried out, performance

can be improved. There is, however, a linear increase in

design complexity. The 1-survivor algorithm needs to in-

voke the EM algorithm M
∑D

i=1(n−i+1) times, n being

the total number of candidate features and D the desired

number of features to be selected. Here, n = 209 and

D = 5. By using the N -survivor approach, the number

of EM invocations increases to NM
∑D

i=1(n − i + 1).
A simple experiment is carried out with N = 2 and sim-

ulations show that an improvement of 7.21% in R and a

reduction of 3.12% in RMSE can be attained by using

2-survivor search relative to single-survivor search.

3.2. Experiment II

In this experiment we compare performance of the

GMM-based voice quality predictor to the performance

of PESQ with the mapping proposed in [8]. Table

1 summarizes the performance figures; the column la-

belled “↑%R” shows improvement in R relative to PESQ

by using a 5-component GMM estimator, trained with

features selected by the proposed algorithm. Simi-

larly, “↓%RMSE” denotes decrease in RMSE rela-

tive to PESQ. Full GMM estimators outperform PESQ

by 26.12% and 18.04% in R and RMSE, respectively.

With 2-survivor search, an average improvement of ap-

proximately 29% in R and an average decrease of 19.51%

in RMSE is attained. Additionally, it is important to

note that, despite lower performance, full GMM estima-

tors trained on features selected by CART or MARS also

outperform PESQ, as was shown in [1].

3.3. Experiment III

In this last experiment, the proposed algorithm is tested

on unseen data, i.e., data that has not been used in the

training of the GMM predictors. Two unseen test data-

bases are used, each comprised of approximately 3000

subjectively scored speech file pairs, with speech under

various degradation conditions. For both databases, the

proposed algorithm achieves an average 5% lower cor-

relation when compared to PESQ. However, for the first

database, the proposed algorithm reduces RMSE by an

average 41%. For the second database, an average de-

crease of 19% is attained. It is important to realize that

RMSE is a more realistic measure of estimator perfor-

mance. It can be shown that RMSE is the sum of un-
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ined variance in the regression model, MOS estima-

error due to limited number of listeners (affecting

gorithms equally), and bias error between subjective

and objective MOS. The calculation of R does not

into consideration this bias error [1].

4. Conclusion
have proposed a feature selection algorithm for

h quality assessment based on Gaussian mixture

ls. The algorithm provides for trading between

lexity and performance by adjusting the number of

vors searched. Simulation results show that GMM

ators designed using the proposed algorithm out-

rm two benchmark selection algorithms, with N -

vor search providing better performance. Further-

, a test on unseen data shows that the proposed al-

hm reduces RMSE by an average 32% relative to

.
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Figure 1: Correlation R and RMSE comparisons between GMM estimators trained on features selected by CART,

MARS, and the proposed algorithm for (a) diagonal and (b) full GMM estimators.

Table 1: Performance comparison: PESQ and proposed algorithm

Cross Validation PESQ 1-Survivor (diagonal) 1-Survivor (full) 2-Survivor (full)

Trials R RMSE ↑%R ↓%RMSE ↑%R ↓%RMSE ↑%R ↓%RMSE

Trial 1 0.8568 0.4643 0.70 5.44 25.35 17.51 29.26 19.53

Trial 2 0.8535 0.4871 0.27 5.09 26.08 17.78 26.08 17.78

Trial 3 0.8460 0.4809 4.55 6.86 24.35 18.27 29.81 20.84

Trial 4 0.8670 0.4670 4.66 4.75 26.54 16.33 30.23 18.24

Trial 5 0.8449 0.4811 -2.13 4.69 25.98 18.46 28.18 19.58

Trial 6 0.8564 0.4668 9.05 8.61 24.72 16.69 28.90 18.81

Trial 7 0.8738 0.4633 0.16 7.08 17.04 14.63 22.35 17.09

Trial 8 0.8581 0.4801 5.29 8.16 34.81 24.09 34.81 24.09

Trial 9 0.8608 0.4695 -6.25 1.53 25.50 17.17 27.51 18.23

Trial 10 0.8623 0.4604 3.92 5.71 30.79 19.46 33.55 20.98

Average 2.02 5.79 26.12 18.04 29.07 19.52
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