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Perceptual Coding of Narrow-Band
Audio Signals at Low Rates
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Abstract—This paper describes a coding paradigm using coding
tools based on the characteristics of the human hearing system
so as to accommodate a wide range of narrow-band audio inputs
without annoying artifacts at low rates (down to 8 kb/s). The
narrow-band perceptual audio coder (NPAC) employs a variety of
algorithms to account for the perceptually irrelevant parts of the
input signal in addition to statistical redundancies. The new algo-
rithms used in the NPAC coder include a perceptual error measure
in training the codebooks and selecting the best codewords which
takes into account the audible parts of the quantization noise, a
perception-based bit-allocation algorithm and a new predictive
scheme to vector quantize the scale factors. The NPAC coder
delivers acceptable quality without annoying artifacts for most
narrow-band audio signals at around 1 bit/sample. Informal
subjective tests have shown that the NPAC coder outperforms a
commercial low-rate music coder operating at 8 kb/s.

Index Terms—Adaptive bit allocation, masking model, modified
discrete cosine transform filter bank, narrow-band audio coding,
perceptual audio coding, perceptual distortion, perceptual vector
quantization, predictive vector quantization.

1. INTRODUCTION

UDIO compression is concerned with the efficient trans-

mission or storage of audio data with good perceptual
quality. Audio files require a lot of bandwidth (or memory)
for transmission (or storage). For instance, an audio signal
sampled at 8 kHz and using 16 bits for each sample gives a data
rate of 128 kb/s. In this work we show that for narrow-band
audio signals, it is possible to reduce the data rate to less
than 10 kb/s while maintaining acceptable quality (i.e., without
annoying artifacts).

The increasing traffic in wireline (e.g., telephony or Internet)
and wireless (e.g., cell phones) networks calls for high com-
pression efficiency to better utilize the capacity of existing re-
sources. As such, there is a need for bandwidth-efficient coding
of a variety of sounds including speech, music and multiple si-
multaneous speakers.

Traditional speech coders designed specifically for speech
signals achieve compression by utilizing models of speech pro-
duction based on the human vocal tract. However, these speech
coders are not effective when the signal to be coded is not human
speech but some other signal such as music. These other signals
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do not have the same characteristics as human speech and are
not well modeled with a voiced/unvoiced signal exciting a vocal
tract filter. As a result, traditional speech coders often have un-
even results for nonspeech signals. In contrast, perception-based
coders can accommodate diverse signals by using human audi-
tory masking phenomena [1] to identify the inaudible parts of
audio signals. When the perceptually irrelevant information is
not coded, the audio coder can operate at much lower bit rates
and still provide good sound quality.

A. Motivation for Low Rate Coding of Narrow-Band
Audio Signals

Although a lot of research has been done on high-quality
coding of wide-band audio signals over the past decade [2]-[6],
new applications such as Internet broadcasting, consumer mul-
timedia products, narrow-band digital AM broadcasting! and
satellite networks are emerging. For those applications mod-
erate audio quality without annoying artifacts at low bit rates
below 16 kb/s is adequate [7]-[9]. In some applications either
the number of users is huge (e.g., Internet) or the available band-
width is limited (e.g., satellite and radio communications) ne-
cessitating extreme bandwidth efficiency.

Coders suitable for narrow-band audio generally operate at
bit rates above 16 kb/s (e.g., ITU G.726 ADPCM standard) to
deliver moderate audio quality. On the other hand speech coders
operating at bit rates lower than 16 kb/s are not suitable for en-
coding audio signals. There is a gap between the operating bit
rates of state-of-the-art narrow-band speech coders (8 kb/s and
below) and low bit rate audio coders operating at around 16 kb/s.

In this work we take on the challenge of designing a coding
structure to accommodate narrow-band audio inputs (band-lim-
ited from 50 Hz to 3.6 kHz, sampled at 8 kHz, and represented
with 16 bits per sample) at bit rates comparable to existing
narrow-band speech coders. To accomplish this goal, we have
developed an audio coding structure based on the characteris-
tics of the human hearing system. The proposed coder, which is
referred to as the narrow-band perceptual audio coder (NPAC),
provides moderate quality (i.e., without annoying artifacts) for
narrow-band audio inputs at bit rates down to 8 kb/s [10]-[12].
Although in recent years the TwinVQ coder operating at
6-8 kb/s has been adopted as part of MPEG-4 Audio [13],
the NPAC coder employs a variety of novel perception-based
algorithms to take into account the perceptually irrelevant parts
of the input signal in addition to statistical redundancies.

The NPAC coder has moderate complexity and a software
implementation of the coder written in the C language runs in
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Fig. 1.

Block diagram of the NPAC coder. The lines (in the order of their thickness) indicate the processed input data, the intermediate data and the window

switching flag. The gain adjustment module can be added to the NPAC coder at the cost of around 2 kb/s.

real time on a computer using a 450 MHz Pentium processor.
The algorithmic delay of this coder is 30 ms, which is reasonable
for most applications.

Although the NPAC coder belongs to the family of percep-
tual audio coders, it is significantly different in concept and
implementation from high-rate wide-band audio coders. While
the goal of high-rate audio coding is to achieve transparent or
near transparent quality of wide-band audio with a 7-20 kHz
bandwidth [2]-[4], [14], our goal is to achieve moderate audio
quality. State-of-the-art high-rate audio coders spend around 1.5
bits per sample (in the order of 64 kb/s) to reproduce high quality
audio. Since important spectral features of natural audio signals
are located between 300-5000 Hz [1], high-rate audio coders
spend considerably more than 1.5 bits per sample on the low
frequency spectral components. In the NPAC coder, we spend
only 1 bit per sample for the frequency band 50-3600 Hz. In
high-quality perceptual audio coders, the goal is to have the
coding distortion totally masked by the input signal. However,
at low bit rates the distortion may not be completely masked and
the emphasis shifts to minimizing the audible artifacts.

II. OVERVIEW OF THE NPAC CODER

A block diagram of the NPAC coder is shown in Fig. 1. The
blocks are described in this and the following sections. In this
paper we consider monaural audio signals bandpass filtered to
limit the spectrum between 50 Hz and 3.6 kHz and sampled
at 8 kHz. A filterbank is used to decompose the input signal
into spectral components. The masking threshold is estimated
and used for both adaptive bit allocation and quantization of the
transform coefficients.

III. TIME TO FREQUENCY MAPPING

A modified discrete cosine transform (MDCT) [15] is used to
transform the audio data. The MDCT provides critical sampling,
perfect reconstruction and due to the overlapping blocks, re-
duced block edge effects. There is a direct relationship between

the MDCT and DFT [11] which implies that the MDCT coeffi-
cients represent the frequency content of the input signal. More-
over, FFT-like algorithms can be used to compute the MDCT.

A. Choice of MDCT Window

For the MDCT, windowing is used to select a portion of the
input signal for analysis. The length of the window is a com-
promise between long windows (high coding gain?) and short
windows (better transient coding by keeping coding noise lo-
calized in time). Since the characteristics of audio signals vary
with time, and since the NPAC coder is also intended for speech
use, we choose a compromise analysis frame length of 30 ms,
a period over which speech signals can be considered to be
pseudo-stationary. The coder takes in 240 samples (with 50%
overlap) and uses an MDCT to decompose the block of data.
However, sharp transient sounds require a higher temporal res-
olution (shorter time window).

The shape of the time window used for the MDCT affects
the frequency selectivity of the equivalent filterbank. We need
to trade off resolution in the main lobe versus high attenuation
of the side lobes. A narrow main lobe keeps energy local to
the MDCT coefficients and prevents loss of coding gain. The
main lobe width should be less than the width of the narrowest
critical band (100 Hz). This choice makes it easier to control
the perception of the quantization noise and to compute the si-
multaneous masking thresholds more accurately. On the other
hand, the stopband attenuation should be high to reduce spec-
tral leakage.

In [6] a Kaiser-Bessel-Derived (KBD) window with high
stop band attenuation is used. Although this window performs
well for many audio signals, it has a poor frequency selectivity
that makes it unsuitable for low-pitch harmonic signals. In [4],
in order to accommodate a wider range of audio signals, the
coder allows for switching between a KBD window and a sine
window.

2Coding gain measures the ability of a transform to compact the energy into
a few coefficients [16].
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In the NPAC coder, we have designed the time (lowpass pro-
totype) window with a 50-Hz bandwidth. The modulated re-
sponse has a bandwidth of 100 Hz. The prototype window is
designed by the following optimization procedure [12]

=+l
Hy(+) = arg min Z W (k) (Higear(k) — H(k))?
H k=0

subject to
h(2M —1 —n) = h(n),
h%(n) + h*(n+ M) =1, (perfect reconstruction) (1)

(symmetry)

where Ny is the Fourier transform length, H is the normalized
DFT of the window h(n), and M is the number of transform
coefficients of the MDCT (half the length of the window). Higeal
is the DFT of the ideal lowpass filter defined as follows:

1, 0<k<k
Hidcal(k) = {0/ kp_< k P (2)

where £, is the edge of the transition band. For an Np-point
DFT and M MDCT coefficients, each ideal bandpass filter is
represented by N /2M points of the DFT. Since the prototype
lowpass filter generates the filterbank, its bandwidth is half
the bandwidth of each bandpass filter. Therefore, the passband
of the ideal lowpass filter is represented approximately by
(Nr/4M) + 1 points, meaning that k, ~ (Np/4M) + 1.

The weighting function W gives different weights to the pass-
band, transition band and the stop band. Note that we give more
weight to the stopband to reduce the leakage between bands. W
is defined by

1, 0<k<k
W(k) = {0, kp <k < ki ?3)
100, k, <k

where k; is the edge of the stop band. We assume that the width
of the transition band can be larger than a critical band. Since
the critical bandwidths vary with frequency, we take a value of
200 Hz for the transition band. For a sampling rate of 8000 Hz
and an Np-point DFT, the transition width becomes Ng/40
and therefore in (3), ks is set to k, + (Np/40). Although, for
a window of 240 samples, the MDCT coefficients represent
steps of 33.3 Hz, the choice of 100 Hz allows us to enhance
the stopband rejection of the window response.

B. Handling Transients

For high-energy transient parts of the input signal, it is
desired to localize short burst of quantization noise to prevent
it spreading over a long period of time. We handle this problem
by switching to a shorter window when a strong jump in energy
is encountered [17]. As an alternative to switching to short
windows at onsets, Herre and Johnston [18] use temporal
noise shaping (TNS) to continuously adapt the temporal and
frequency resolution of the filterbank.

Short windows reduce the coding gain and should be avoided
when they do not improve the coded signal quality. Since back-
ward temporal masking lasts for about 5 ms (for narrow-band
stimuli) while forward temporal masking lasts for about 200 ms
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Fig. 2. Window switching for a piece of music containing a transient sound.

[19], a distinction should be made between rises and falls in the
energy of the signal. A simple criterion based on the relative
positive change in the energy of the input signal is used. In the
time domain, a local estimate is made of the change in signal
energy. This is done by splitting the input frame into intervals
of three time samples and calculating the energy of the sam-
ples in each interval. The short integration interval allows the
algorithm to respond to rapid fluctuations of the energy contour
while being relatively unaffected by high-frequency noise. The
maximum positive change will be found as follows:

r — max <M) )

€j

where ¢; is the energy of interval j. If r exceeds 10, we switch
to a shorter window.

In order to maintain perfect reconstruction of the combined
analysis and synthesis stages, a start window is used to switch
from long to short windows, and a stop window switches back
[14]. For the short windows we use a frame length of 10 ms (80
samples). Fig. 2 shows the switching of the longer window to
a series of shorter windows for a piece of music containing a
transient sound.

IV. MASKING

Masking is a property of the hearing system by which a
weaker audio signal becomes inaudible in the presence of a
louder signal [1]. The masking depends both on the spectral
composition of the masker and the signal to be masked as well
as their variation with time [20], [21]. In audio coding, the
masker is the original input signal and the signal to be masked
is the quantization error.

The masking phenomena can be exploited to determine
the optimal assignment of available bits. Bits need only be
assigned to the audible spectral components. The step size and
the number of bits for the quantizers can be chosen to give a
quantization noise for the audible components that is below the
masking threshold.
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A. Simultaneous Masking

Simultaneous masking occurs when the masker and the
maskee are presented at the same time to the hearing
system. There are many models for computing the simul-
taneous-masking threshold [1], [14], [20], [22]. Since the
MDCT is employed to decompose the input signal, we use a
modified version of the model proposed by Johnston [22] which
is based on the work by Zwicker [1] and Schroeder et al. [20]
to calculate the masking threshold corresponding to the MDCT
coefficients.

The masking calculation consists of the following steps.

» Calculate the Bark energy spectrum.

e Convolve the Bark energy spectrum with the following
spreading function proposed by Schroeder er al. [20] to
give the excitation curve

SpFn(z)=15.8147.5(z + 0.474)— 17.5(1+(z+0.474)2)°'°
®)
where z is the critical band number in Bark.

» Subtract an offset (in decibels) depending on a tonality
factor from the excitation level to give the masking
threshold.

* Compare the masking threshold with the hearing threshold
to select the greater value.

Excitation Level: The Bark spectrum is derived from the
DFT frequency spectrum with a nonlinear transformation of the
frequency variable [22]. This gives a measure of the distribution
of energies with respect to the critical band numbers. The Bark
spectrum is convolved with the spreading function to give an
excitation level [22].

Masking Level Calculation: The masking threshold is de-
rived from the excitation level by subtracting an offset (in deci-
bels) to give the masking level. The offset value depends on
whether the signal is tone-like or noise-like.

In contrast to [22] in which a spectral flatness measure is
used to identify the nature of the whole frame, we take another
approach based on the predictability of the transform coeffi-
cients in each critical band. Note that, most audio signals have
a noise-like structure at high frequencies despite the fact that
they may have a strong harmonic structure at low frequencies.
Considering this fact, it would be more accurate to identify the
nature of the spectrum locally. The tonality factor will be cal-
culated for each critical band using the predicted value of the
current subvector [14]

x® — 9x (-1 _ x(-2) (6)
where X () is the predicted vector at time index i, X *~1) and
X (=2 are the vectors containing the transform coefficients in
the same critical band in two previous frames (i indicates the
newest vector). The relative prediction error is calculated as

HXa) _ X

= : (7)
| X @)

+ Hf((v?)

The relative prediction error will be converted to a tonality factor
according to [14]

a = min (1, max (—0.3 — 0.431og(6),0)) . 8)
The offset value is determined by the tonality factor [22]

Logis(j4,a) = a(14.5+ j) + 5.5(1 — a) )
where j is the index of the critical band.

The masking level can then be calculated. Finally, the calcu-
lated masking threshold is compared to the threshold of hearing
in the corresponding critical band to select the greater value.

MDCT Masking Threshold: Since the masking threshold is
calculated based on the DFT, this masking threshold must be
modified for use with the MDCT coefficients. Consider the fol-
lowing relationship between the DFT and MDCT coefficients

[11]:
1/ |S(k

where C(k) is the MDCT coefficient and S(k), the cor-
responding DFT coefficient of the windowed input signal
modulated by exp(—jnn/N), is calculated as follows:

S(k) = F {exp <$> :E(n)h(n)}

where F denotes the Fourier transform, 2(n) and h(n) are the
input block of data and the window function respectively. If
Mprr(k) is the masking threshold corresponding to the kth
DFT coefficient, then in order to have the same signal-to-mask
ratio (SMR) at any coefficient in the DFT and MDCT domain,
the following relation should hold:

( m(M+1)(2k+1)

i 4S(k)> (10)

Y

(k) _
Muypcer(k) B

|S (k)|
Mprr(k)

12)

where MypcT(k) is the masking threshold corresponding to
the kth MDCT coefficient. The masking thresholds are then re-
lated as follows:

Muiper (k) = _MDFT( )

« cos? < (M +1)(2k+1)
4M

- 45(k~)> . (13)

B. Temporal Masking

Temporal masking occurs when signals occur close in time,
but not simultaneously. A signal can be masked by another
signal that occurs later (premasking), or a signal can be masked
by another signal that ends before the signal begins (post-
masking). The duration of premasking is less than 5 ms (for
narrow-band stimuli), whereas that of the postmasking is in the
range of 50 to 200 ms [19]. Since incorporating the backward
masking of the hearing system into the coder introduces extra



NAJAF-ZADEH AND KABAL: PERCEPTUAL CODING OF NARROW-BAND AUDIO SIGNALS AT LOW RATES 613

delay with little gain in compression, we neglect that effect and
just exploit forward masking.

There are few analytical expressions which model post-
masking (but see [23] and [24]). We have adopted the following
model proposed in [23] as it takes both the effect of the fre-
quency and the level of the masker into account:

me an(f.L) = a + fexp (—f) (14)

where my 4p is the temporal masking in decibels, L is the sound
(masker) level in the previous frame in decibels SPL, f is the
frequency in hertz and «, , and -y are parameters to be deter-
mined from experimental data. In [23], three expressions have
been fitted to the experimental data for «, 3, . In this work, we
consider the temporal masking only if the masker level is more
than 30 dB SPL. We assume that an audible sound usually has a
level of more than 30 dB SPL in an ordinary (nonquiet) environ-
ment. Based on this assumption and the data given in [23] we
have found the following expressions for the above-mentioned
parameters:

o =0.001L% + 0.2267L + 17.7142
B = —0.0047L% + 1.2256L — 24.325 48
v = —0.0002L* + 0.0546 L> — 5.4685L>

+ 234.7411L — 3325.0350. (15)
Note that the data reported in [23] give the level of the temporal
masking at 20 ms after the masker. The time interval between
successive frames in the NPAC coder is 15 ms, and hence the
masking level will be under-estimated using this formula.

In the NPAC coder, we calculate the temporal masking for
each critical band. In doing so, we assume that all the energy in
each critical band is concentrated in the center frequency (except
the first band for which we set f to 100 Hz) and that the sound
level in any critical band is due to the contribution of all the
transform coefficients in that critical band. This way, for each
frame we calculate 17 temporal-masking thresholds. If the tem-
poral-masking threshold in any critical band is greater than the
sound level in that band, we assume that all the coefficients in
that critical band are masked. Otherwise, the temporal-masking
threshold is equally divided among the coefficients in that crit-
ical band. Note that since the masking level is due to the contri-
bution of all the transform coefficients in a critical band (from
the previous frame), the equal division of the masking power
among the transform coefficients in an unmasked critical band
is an appropriate way to take into consideration the effect of the
temporal-masking phenomenon.

C. Combined Masking Threshold

A combined masking threshold is computed by considering
the effect of both temporal-masking and simultaneous-masking
thresholds. There is a question as how to combine the masking
due to these effects [23], [25]. We use a power-law rule as fol-
lows [23]:

=

Moot = (M2 + MB)(F) (16)

where M ¢ is the net masking threshold (in the linear domain)
due to two masking thresholds M and M. A value of 0.3 for
parameter p is found to be a good match to experimental data
[23].

D. Verification of the Masking Models

In order to verify the masking models, the masking thresh-
olds for several audio signals were computed. After replacing
the masked coefficients by zeros, there was no perceptual differ-
ence between the original and reconstructed signals. If we arti-
ficially increase the level of masking to have about 80% of the
transform coefficients masked, the quality of the reconstructed
signal is still good, i.e., with no annoying distortion. This exper-
iment confirms that we should concentrate on reproducing the
perceptually important transform coefficients.

V. QUANTIZATION OF THE TRANSFORM COEFFICIENTS

In the NPAC coder, we decompose subbands of transform co-
efficients into gains and shapes. Then a VQ scheme along with
perception-based bit allocation is used to quantize the shape
vectors. To quantize the gains (scale factors), a predictive/non-
predictive scheme is used.

A. Quantization of the Shape Vectors

One way to accomplish good quantization is to consider
the characteristics of the hearing system such as masking
phenomena and limited temporal and frequency resolution.
Due to the limited number of bits available for coding the
transform coefficients, vector quantization is used rather than
scalar quantization. We quantize and transmit only unmasked
transform coefficients. This approach would require additional
bits to identify the masked/unmasked coefficients to reconstruct
the audio signal at the receiver. Instead of doing so, we employ
a split adaptive VQ scheme to quantize the transform coeffi-
cients. The bandwidth division is based on the critical bands.
We incorporate the masking threshold while vector quantizing
the transform coefficients without explicitly transmitting any
information about the masking pattern.

We use a modified version of the LBG algorithm [26] with a
distortion measure based on the audible noise energy to design
the codebooks [10]. The same error criterion is used to select
the best codewords.

For a normalized vector X,, and the jth codeword y(¥), we
define the following distortion measure:

A ; 2

d(k) = | Xu(k) = xV (k)| — Mu(k) (17)
where M, is the vector of normalized masking thresholds cor-
responding to X,,. The normalized energy of the audible noise

is calculated from

K
D (X x¥) = ; max (d(k), 0) (18)
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where K is the dimension of X,,. The centroid of each Voronoi
region is determined by minimizing the normalized energy of
the audible noise as follows:

I
Xg{))t = arg min Z D (Xff), X(j)) (19)

X i

where I is the number of the vectors in region j.

At very low bit rates, it is not possible to have transparent
coding. Since the quantization noise level often goes above the
masking threshold, it is appropriate to shape the quantization
noise inside each band too. Therefore, we may modify the error
criterion as follows:

X (k) = XD R = Mo (k)
dolk) =30 1 M)
K
D, (Xn,X(j)) = ;max(dw(k),()) (20)

where D,, is the total weighted quantization noise above the
normalized masking threshold. By making this modification, we
allow the audible quantization noise to get shaped as a function
of the distribution of energy inside a critical band. The reason for
choosing X2 (k)+ M, (k) as the normalization factor is that we
want to avoid giving a large weight to the masked coefficients
which usually have a small magnitude. Note that the masking
threshold is the same for all the coefficients in a critical band
while the first term in the normalization factor, X2(k), is not
the same. This normalization factor gives larger weights to the
unmasked coefficients with small magnitudes.

1) Memory Reduction for Storage of the Codebooks: Vector
quantization needs a lot of memory space to store the code-
books. Solutions to this memory problem have been proposed
in the literature [27]. In the NPAC coder, bits are adaptively
allocated to different critical bands. As such, codebooks with
different length are needed to quantize shape vectors in each
critical band. In this work, we have investigated the following
methods to reduce the memory required to store the codebooks
with little loss of quality. In all methods, codebooks with sizes
equal to different powers of 2 are trained for each critical band.
In one approach, we find the closest codewords in the largest
codebook to the codewords of the second largest codebook
(in the mean square sense). Then we reorder the codewords
of the largest codebook to put the selected codewords on the
top. We repeat the procedure for other codebooks to end up
with embedded codebooks. With these embedded codebooks,
the memory required is reduced by almost 50% for large
codebooks, with very little loss of quality.

Another approach to creating an embedded codebook is to use
the largest codebook to code a large set of training vectors. Then
based on the frequency of selection of the codewords, we can re-
order the codewords to have most-often selected codewords on
the top of the codebook. The resulting codebook shows almost
the same performance as when we use separate codebooks to
quantize the subvectors. To further reduce memory, the bands
with the same number of coefficients can share the same code-
book with little loss of quality.

B. Predictive VQ of the Scale Factors

The transform coefficients in each critical band are normal-
ized by the corresponding square-root-energy £; which must be
available to the receiver as side information. There exists a high
level of correlation between the gain vectors. This similarity is
partly due to the 50% overlap between successive frames. The
interframe correlation can be efficiently exploited by applying
a predictive scheme to quantize the scale factors.

Since processing several past frames to estimate the current
vector makes the prediction scheme more vulnerable to channel
errors, we use only one previous quantized spectrum. In the
NPAC coder, a predictive/nonpredictive VQ scheme is used to
quantize the scale factors in the log domain. We use the spec-
tral distortion measure to choose the quantization scheme in
the way that the predictive scheme is employed when the av-
erage spectral difference of the current and previous vectors
is less than 6 dB. This strategy is compatible with the mech-
anism of the hearing system; in steady-state parts of the input
signal such as voiced speech, we need finer quantization of
both spectral shapes and gains, whereas for “unstructured” or
noise-like parts more coarse quantization is adequate. This also
can be justified by taking into account the masking property of
the hearing system. Since the masking threshold in the case of
tone-masking-noise is lower than that of noise-masking-noise,
we need finer quantization for pseudo-periodic (tone-like) parts
of the input signal. In the predictive scheme, we quantize the
vectors containing the scale factors through the following steps
(note that all these steps are performed in the log domain).

e (Calculate the mean value of the scale factors

1 17 0
pi=-—=> gy @1)
17

where gj(.i) is the logarithm of E; (square-root-energy) at

time index 7.
¢ Remove the mean value from the scale factors

gy =@ —u (22)
where g(*) is the log-gain vector.

* Quantize p; using a differential quantizer.

* Predict the current mean-removed vector from the previous

mean-removed vector using the best predictor matrix

P,y = argmin g — Pygl~")| (23)
Py
g =Popgli Y (24)

where Py, is the predictor matrix, gﬁf‘l) is the mean-re-
moved quantized version of the previous vector and g,&’ ) is
the prediction of the mean-removed current vector.

* Form the difference vector
dy =gt —ji; — g7 (25)
where /i; is the quantized mean value of the current vector.
* The difference vector will be quantized using a two-stage

VQ.
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This approach leads to fine quantization of the scale factors
in steady-state parts of the input signal which is highly desired
for high quality of the coded signal. A total of 37 bits is used to
quantize the scale factors. For computational reasons, we limit
codebooks size to 2048 codewords. For the predictive scheme,
the coding is done as follows: 6 bits for the mean value, 9 bits
for the predictor selection and 2 x 11 bits for the two-stage VQ
of the difference vectors.

In the nonpredictive scheme, the vector of scale factors is
mean-removed (in the log domain). The mean-removed vector
is vector quantized using a codebook of 2048 codewords. In the
next step the best estimator matrix is selected out of 64 matrices
(requiring 6 bits) to estimate the current mean-removed vector
based on the observation of the best codeword selected in the
first step. Then the difference vector will be formed as described
for the predictive scheme. Finally the difference vector will be
quantized using a codebook of 2048 codewords. Note that 9 bits
is spent to quantize the mean value.

For a set of 10000 test vectors, the average spectral distor-
tion for steady-state frames (using the predictive scheme) was
less than 1.5 dB and for the rest of the frames (using the nonpre-
dictive scheme) was 2.5 dB. The number of quantized vectors
with spectral distortion above 4 dB was less than 0.5%.

1) Design of the Predictor Matrices: The predictor matrices
are designed to minimize the average spectral distortion be-
tween the mean-removed gain vectors and the predicted vectors.
We take a training set of 100 000 vectors and find the predictor
matrices using a modified version of the Lloyd algorithm. First
we design one predictor matrix for the whole training set. Then
by splitting the first matrix and performing the Lloyd algorithm,
we find new predictor matrices. This process continues until the
desired number of predictor matrices are found. For each subset
of the training set (corresponding to a predictor matrix), we find
the optimal predictor matrix through the following optimization
procedure:

P(J)

PJ)

where I2; contains the time indexes of the vectors belonging to
the jth region. Note that, in order to perform the optimization we
need to have the quantized vectors. To overcome this problem,
we use the quantized vector obtained through the nonpredictive
method and then refine the predictor matrices by repeating the
optimization procedure. In each iteration we use the finer quan-
tized value for g(L 1 obtained in the previous iteration.

By using the orthogonality theorem, we find the solution to
the optimization problem as follows:

P(J)

S =R (R @)

where R(] ) is the summation of the cross-correlation matrices
of the current and quantized previous vectors in Voronoi region
J. The matrix jol) is the summation of the autocorrelation ma-
trices of the quantized previous vectors in the same region. We

continue the iterations until the required number of predictor

matrices is found and the change in the average spectral distor-
tion becomes less than a threshold.

2) Simplification of the Predictor Matrices: The magnitude
of the entries of the prediction matrices decrease as they are
farther from the main diagonal. In effect, each component in
the current vector will be predicted mainly by the corresponding
and a few adjacent components of the previous quantized vector.
We exploit this fact in order to set the far-off diagonal elements
of the predictor matrices to zero. By doing so, we reduce the
computation load and also the memory for the storage of the
predictor matrices. In order to find the predictor matrices, we
have to reformulate the optimization procedure. As an example,
assume that the main diagonal and its adjacent diagonals are
nonzero and the rest of matrix entries are set to zero. We can
easily generalize the following formulation for any number of
nonzero diagonals:

g =pgli~Y (28)
where P is the predictor matrix defined as
P11 P12
P21 P22 - 0
P= (29)
0 - o pigar
Pi716 P17t
Rewrite (28)
g() = G,c (30)
where
0 00
A(i—1
giz ) 0
0 g(’il—l)
~(1—1
922 )
~(i—1
9513 )
Gl = . 31y
0
(i—1)
nlb
A(z 1)
an
A(i—1
97(117 ) .0
0 §£L1—61)
Lo 0 0 §izY]
and
c= [P1,1 P1,2 P21 P2,2P23
' P16,15 P16,16 P16,17 P17,16 P17,17]t- (32)

We have to find ¢ to minimize the spectral distortion for each
subset (Voronoi region) of the training set

W (4)
ijt—argn)nnz Hg() Gic)/
c, 1€ER;

(33)
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Fig. 3. Average spectral distortion versus the number of predictor matrices
(from top to bottom) with 1, 3, 5, 7, 9, 11, 13, and 33 nonzero diagonals. The
lowest curve corresponds to the predictor matrix with all-nonzero diagonals.

€)

Copt Will be the solution to the following linear equations:
Acg))t =y (34)
where
A=) GG y=3) Gig. (35)

i€R; i€R;

It is easy to show that A is a positive definite matrix and
therefore we can use the Cholesky method to solve the linear
equations. Fig. 3 shows the average spectral distortion for
different predictor matrices as a function of the number of
predictor matrices. There is a significant gap between the upper
curve which corresponds to the diagonal predictor matrix and
the other predictors. This is due to the fact that other predictor
matrices exploit the lateral correlation among the components
of the gain vector. At low rates, the performance of the pre-
dictors (except the single diagonal predictor) are almost the
same, but as the number of bits increases, the performance
of the predictor scheme can be enhanced at the cost of the
higher computational load and larger memory storage for the
predictors.

In order to lower the computational load and the required
memory, we have investigated a special case of the above-men-
tioned procedure in which all the predictor matrix entries on the
same diagonal are equal. Viewing this approach from a filtering
perspective, we convolve the quantized previous gain vector
with a noncausal FIR filter to estimate the current vector. The
optimization procedure can be formulated in a fashion similar
to the case above.

Fig. 4 shows the average spectral distortion for different
predictor filters as a function of the number of predictors. Like
the previous approach, there exists a gap between the upper
curve which corresponds to the predictor filter with length 1
(single scalar predictor) and the other predictors. At low rates,
the performance of the predictors (except the single diagonal
predictor) are almost the same, but as the number of predictors
increases, the spectral distortion saturates for short filters, but
for long filters it decreases linearly with increasing the number
of predictors. Also the difference between the prediction errors

Average spectral distortion (dB)

2 1 1 L 1 L
1 2 4 8 16 32 64

Number of predictors

128 256 512

Fig. 4. Average spectral distortion versus the number of predictor filters with
length (from top to bottom) 1, 3,5, 7,9, 17.

decreases as the filter length increases. That is expected as
there is not a significant correlation between widely separated
components of the gain vectors. Compared to the first approach,
for the same number of bits, the prediction error is higher in
the second approach.

In the NPAC coder, we have used the last approach with the
predictor matrices having five nonzero diagonals.

C. Gain Adjustment

In low-rate coding, there are not enough bits to finely quantize
the perceptually important coefficients. In this coder we propose
the following procedure to reduce the quantization errors by ad-
justing the gain in each critical band:

Popt = arg min zK: max <(X(k) — pX(k))2 - M(k), 0)
k=1

(36)
where p is the gain adjustment factor, X and X are the orig-
inal and quantized vectors of transform coefficients, M is the
corresponding masking threshold and K is the dimension of
the subvector. This optimization procedure gives the optimal p
to minimize the audible difference between the input and the
output vectors. Computation of the optimal adjustment factors
requires an optimization over each critical band. We take a sub-
optimal approach to decrease the computation because in low-
rate coding the quantization noise in most bands is above the
masking threshold. First we ignore the masking threshold

K
Popt A arg min Z (X(k) - pX(k))2 (37)
p

k=1

The resulting p will be optimal in the squared-error sense but
suboptimal in a perceptual one. Note that some critical bands
are totally or partially masked and therefore there is no need
to lower the quantization noise energy below the masking
threshold. In those bands, the adjustment factors are sometimes
found to be up to 1000. To overcome this problem and also
limit the dynamic range of the adjustment factor, we confine p
to a range of 0.5 to 2. With an overhead of less than 2 kb/s, the



NAJAF-ZADEH AND KABAL: PERCEPTUAL CODING OF NARROW-BAND AUDIO SIGNALS AT LOW RATES 617

adjustment factors (vectors of 17 components with the limited
dynamic range) can be finely vector quantized.

The gain adjustment cannot be integrated into the gain-quan-
tization block. The quantized gains are needed for the bit-al-
location block whereas the gain-adjustment factors are found
after performing the bit allocation and shape quantization. How-
ever, if the roughly quantized gains (output of the first stage gain
quantization VQ) are used for the bit assignment, this block can
be absorbed into the second stage VQ of the gain-quantization
block. This way the rate can be reduced at the expense of the
accuracy of the bit allocation.

D. Quantization of the Transform Coefficients in Short Frames

When a short window (80 points) is used, a number of
changes occur. For a short window, 40 new input samples and
40 previous ones are used. The MDCT unit generates only
40 transform coefficients. Although the number of the critical
bands remains constant at 17, the distribution of the MDCT
coefficients within the bands changes. In this case, some
low-frequency critical bands have only one coefficient. The 17
critical bands are combined into seven aggregated bands. This
aggregation is performed so that the vector quantization in split
VQ can always operate on code vectors of dimension greater
than one. Changes in the quantization procedure are required
to handle the aggregated bands. A single gain is calculated for
each aggregated band. To quantize the spectral-shape vectors,
the masking threshold is calculated as for the large frames and
then used for the corresponding transform coefficients inside
an aggregated band.

Since there is little or no similarity between the gain vectors
of the consecutive short frames due to the transient behavior of
the input signal, the gain vectors of dimension 7 are quantized
in a nonpredictive manner.

VI. ADAPTIVE BIT ALLOCATION

In traditional low-rate adaptive transform speech coders, bit
assignment is done based on the distribution of the signal en-
ergy in the frequency domain aiming at minimizing the total
noise energy [28]. Since for most audio signals, energy is con-
centrated at low frequencies, few bits are assigned to high-fre-
quency components. This leads to an output signal which suffers
from lowpass effects. In addition to that flaw, the masking phe-
nomena are not fully taken into account which often results in
allocating bits to the transform coefficients which are masked.

The aforementioned argument underlines the importance of
shaping the noise spectrum based on perceptual principles. In
perceptual bit allocation which is used in state-of-the-art audio
coders, the coding noise can be shaped to be less audible than
a noise with the same energy without noise shaping. Note that
noise shaping can provide high coding quality without requiring
a high SNR.

In low-rate coding of audio signals, due to the scarcity of bits,
unmasked quantization noise (audible noise) is often inevitable.
The final goal in low-rate coding is to deliver acceptable quality
with no annoying artifacts. Two different strategies can be
considered to shape the audible noise spectrum [29]. In one

approach, the quantization-noise spectrum is shaped to become
parallel to the masking-threshold curve. An alternative approach
is to generate a flat noise spectrum above the masking threshold.
According to [29, pp. 427-428], these two approaches are
different in terms of auditory object formation. In the first
approach, the quantization noise is highly correlated with the
input signal and the audible noise is equally audible in different
frequency bands. Therefore, the input signal and the noise will
be perceptually fused to form one auditory object. In the second
approach, the noise is not correlated with the signal and is
audible to various extents at different frequencies. This way,
the noise remains perceptually distinct from the input signal. In
this work, we have developed different bit allocation algorithms
based on the above-mentioned approaches. The algorithms are
presented and discussed in the following sections and the one
which suits more to low-rate coding has been used in the
NPAC coder.

In the NPAC coder, adaptive bit allocation is performed both
at the transmitter and the receiver using the quantized scale fac-
tors. The masking thresholds are calculated from the quantized
scale factors. For each band we need to specify the offset value
which is subtracted from the excitation level (in the log domain)
in order to obtain the simultaneous masking threshold. The pro-
cedure of adaptive bit allocation is discussed in the following
sections.

A. Tone/Noise Discrimination

The masking offset depends on whether the spectrum in
each band is tone-like or noise-like. At low bit-rates we cannot
afford to code the offset value for each band. However we do
distinguish between two cases. In one case the input block of
data has a harmonic structure which implies that the spectrum is
more tone-like. In the other case the input has a more noise-like
spectrum.

In order to distinguish between the two cases, in our im-
plementation we use the same flag which is used in gain
quantization to select either the predictive or nonpredictive
schemes. When the flag is on, we suppose that the input frame
is tone-like. Since for many audio segments, the signal is more
tone-like in the low-frequency bands than the high-frequency
bands, we assume larger offset values (up to 18 dB) for the
low-frequency bands. By doing so, we assign more bits to
the low frequency bands to maintain the pitch structure of
speech. In each band the distance between the energy and the
masking threshold is upper bounded by the offset value (in dB).
Hence, the maximum number of bits allocated to each band is
determined by dividing the corresponding offset value (in dB)
by the distortion reduction rate (see the following section).
For those frames for which the flag is off, we suppose the
input signal is mostly noise-like and set the masking threshold
for all bands 8 dB below the excitation level. Fig. 5 shows
the offset values and the maximum number of bits allocated
to each transform coefficient in different frequency bands.

In the case of short frames, since the input signal contains
a transient and therefore does not have any harmonic structure
(purely noise-like), we set the masking threshold 6 dB below the
spread Bark spectrum [1], [21].
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Fig. 5. Offset values for calculating the masking threshold (top) and

corresponding maximum number of bits per coefficient (bottom) for tone-like
frames (solid lines) and noise-like frames (dashed lines).

B. Critical Band Rate-Distortion Curve

In order to perform bit assignment we need the rate-distortion
relationship for each codebook. A set of 100000 normalized
shape vectors was used to measure the average audible distortion
(i.e., the average error above the masking threshold) for different
numbers of bits. We note that the rate-distortion data can be well
represented by a line fitted to the experimental data. As an ex-
ample, Fig. 6 shows the rate-distortion data for the codebook
corresponding to critical band 2 which contains three coefficients.
Theslopeoftheline whichhasbeenfittedtothedatais — 2.8 dB/bit.

Table I shows the slope of the lines fitted to the experimental
data for the embedded codebook for each band. The high corre-
lation between the experimental data and the fitted line verifies
the accuracy of the linear approximation.

C. SMR-Based Bit Allocation

In this approach bit allocation is performed based on the
signal-to-mask ratio (SMR). This way, the resulting noise spec-
trum will be parallel to the masking threshold curve. Each critical
band is considered as a single entity with its corresponding SMR.
The SMR is equal to the SNR when the quantization noise is
at the threshold of audibility, i.e., when the noise level is at the
masking threshold. The SMR for each band is calculated as

SMRJ' = gAj — my (38)

Average distortion (dB)

-30 L L L 1 L L L L

0 | 2 3 4 5 6 7 8 9
Number of bits

Fig. 6. Rate-distortion data for the embedded codebook corresponding to
critical band 2 which contains three coefficients.

TABLE 1
SLOPE OF THE RATE-DISTORTION LINE AND THE CORRELATION BETWEEN
THE EXPERIMENTAL DATA AND THE LINEAR APPROXIMATION FOR
DIFFERENT CRITICAL BANDS

Band Number of Slope Correlation

coefficients  (dB/bit)  Coefficient
1 2 -4.9 0.998
2 3 -2.8 0.999
3 3 -2.9 0.999
4 3 -2.9 0.999
5 3 -2.9 0.999
6 4 -2.1 0.999
7 4 -2.1 0.999
8 5 -1.6 0.998
9 5 -1.7 0.998
10 5 -1.7 0.999
11 7 -1.2 0.999
12 7 -1.2 0.998
13 8 -1.0 0.997
14 10 -0.9 0.998
15 12 -0.8 0.998
16 13 -0.7 0.999
17 13 -0.7 0.999

where ¢; is the quantized log-energy in band j, and m; is the
logarithm of the masking threshold in that band. We assume that
the initial distortion (in the log domain) for each band is equal
to the corresponding SMR. A “greedy algorithm” using the rate-
distortion data can be employed to assign one bit at a time to the
band with the largest (updated) noise-to-mask ratio (NMR). After
assigning one bit to that band, its NMR on average decreases by
the amount given by the corresponding rate-distortion data.

As a shortcut, a linear approximation of the rate-distortion
data along with the values of SMRs can be used to allocate bits
to each band according to the following formula:

SMR, b

Ai 2 (%)

i€Q
where 2 contains the indexes of the bands with positive SMR
and b is the total number of bits available to quantize the shape
of the frequency spectrum within the critical bands. The slope of

b; = max

;0 (39)
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the rate-distortion line, A;, indicates the approximate reduction
in the NMR for one bit assigned to band 5. Note that no bits are
assigned to those bands whose SMR is negative. After the first
round of bit allocation, the fractional parts of b;’s will be dis-
carded to leave the integer parts. Therefore, the total number of
bits allocated in the first step will be less than b7. To allocate the
remaining bits, the NMR is approximated for each band taking
into account the bits already allocated in the first step

NMR]' = éj —my; — /\jbj. (40)

After calculating the value of NMR’s, one bit at a time is
allocated to the band with the largest value of the updated
NMR. This process will continue until all the remaining bits
are allocated.

D. Perceptual Energy-Based Bit Allocation

In the perceptual energy-based approach, bit assignment is
based on the energy above the masking threshold. The distortion
is considered as the audible part of the quantization noise, i.e.,
the noise above the masking threshold.

The level of audible noise will be relatively higher in the
spectral valleys due to the fact that there is less energy above
the masking threshold there than in regions corresponding to
spectral peaks. In other words, for a given audible noise level
across the spectrum, the local signal-to-noise ratio is lower in
the spectral valleys. We consider two schemes to minimize
the audible noise. In the first scheme the maximum of the
distortion in the critical bands is minimized. In the second
scheme the total audible noise is minimized.

Mini-Max Scheme: The mini-max bit assignment is done
through the following optimization procedure:

Ny
arg min (max (D;(b;))) subject to g bj =br (41)
b g
j 7j=1

where Ny, is the number of bands (i.e., 17 critical bands), br is
the total number of bits available for each frame and D); is the
noise above the masking threshold.

We use a “greedy algorithm” to do the bit assignment. After
each bit assigned, the distortion is updated. This way, one bit at a
time is assigned to the band with the largest updated distortion.

Total Audible Distortion Minimization Scheme: This scheme
minimizes the total audible distortion. Therefore, the optimiza-
tion objective function changes to

Nb Nb
argmin »  D; subjectto Y b; = br. (42)
b i i=1

One bit at a time is assigned to the band which results in the
largest reduction in distortion. Alternately, an analytic approach
may be employed. The energy above the masking threshold is
related to the audible distortion through the following empirical
formula:
b
D; = ¢;E;27 7 (43)
where D is the energy of the audible noise inband ¢, &; is the total
energy of the input vector above the masking threshold, ¢; and j3;
are constants found from the corresponding rate-distortion line
for the codebook of critical band :. The linear approximation

of the rate-distortion data in the log domain is re-expressed
as an exponential relationship in the linear domain.

By using the mathematical expression for D; in (43), the
number of bits for each critical band is found to be

bi = max (% + 10g2 <£LCL> /0> (44)
21:1 Bj Eqm

Ny
Egm = (H(ci&')ﬂi) =

=1

where

1

(45)

The integer parts of the b;’s are kept and the remaining bits will
be distributed one at a time to the band which reduces the fotal
distortion the most.

E. Comparison and Subjective Evaluation of the
Bit-Assignment Algorithms

Fig. 7(a) shows the power spectrum and the Bark power spec-
trum of a frame of voiced speech on the Bark scale. The Bark
power spectrum is convolved with the spreading function to ob-
tain the excitation pattern. The excitation and the masking curves
are shown in Fig. 7(b). As it is seen in Fig. 7(b), the offset level,
which is subtracted from the excitation pattern, is larger at the
low-frequency critical bands. In bands 2, 4, 6, and 7, the en-
ergy falls below the masking threshold. The number of bits al-
located to different critical bands using the two bit-assignment
algorithms is shown in Fig. 7(c) and (d). Comparing the two bit
allocation algorithms, we notice that the perceptual energy-based
(i.e., mini-max) algorithm [Fig. 7(d)] allocates more bits to the
bands with a large energy (for instance bands 1, 3, and 5). Both
algorithms assign zero bits to the bands whose energy is below
or almost below the masking threshold (bands 2, 4, 6, and 7). In
this example, we have ignored temporal masking effects.

To evaluate the bit assignment algorithms, we conducted in-
formal listening tests. Five listeners took part in the test and
listened to two speech files (male and female) and two pieces
of music (soprano and guitar) and the corresponding processed
audio files. We used the perceptual bit-assignment schemes,
i.e., perceptual energy-based approach (the mini-max scheme
and the minimization of the total distortion scheme) and the
SMR-based algorithm to compress the audio files. The test was
run in an office environment and the subjects listened to the test
materials over headphones.

For the tests, the NPAC coder was operating at 8 kb/s (120 bits
per frame) and assigned 81 bits to 17 critical bands to quantize
the spectral shapes. The unquantized adjusted gains were used
to denormalize the quantized shape vectors.

As a preliminary test, we examined the impact of masking.
In this test, we ignored any masking effect and performed the
bit assignment based on the distribution of the signal energy.
However, because the energy-based (ignoring masking) scheme
allocates many bits to the low-frequency bands and relatively
few bits to the high-frequency bands, the outputs suffered from
incomplete coding of the high frequencies. This result verifies
the importance of incorporating the masking effects into any
bit-assignment algorithm.
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Fig. 7. Power spectrum, Bark power spectrum, excitation and masking curves

for a frame of voiced speech. The lower plots show the bit allocation using
the SMR-based and the Energy-based algorithms. (a) Power spectrum and
Bark power spectrum (bold curve). (b) Bark power spectrum (bold curve),
excitation curve (broken curve) and masking curve (thin curve). (c) SMR-based
bit allocation. (d) Energy-based (mini-max) bit allocation.

The perceptual energy-based algorithm which minimizes the
total audible distortion resulted in output quality similar to that
for the energy-based (ignoring masking) bit allocation. Due to
different dimensionality of different critical bands, the distortion
reduction rate is higher for the narrower low-frequency bands.
Moreover for many audio signals, the energy is concentrated
in the low-frequency bands. Therefore, more bits compared to
other perceptual schemes are assigned to the low-frequency
bands. This results in finer quantization of low-frequency bands
and coarser quantization of the high-frequency bands.

The other schemes (the SMR-based and the mini-max) de-
livered better quality with less high-frequency distortion. Both
algorithms produced decoded signals which could be distin-
guished from the original narrow-band signals. The SMR-based
algorithm gives less high-frequency distortion at the expense of
a little degradation in the pitch structure which is perceived as
an increased harshness. On the other hand, the decoded audio
signals using the perceptual energy-based algorithm carried
higher levels of high-frequency noise which sound like an echo
along with the original signal. Although according to [29, pp.
427-428] the SMR-based algorithm should be less favored
since the coding noise is fused with the signal, listeners showed
a slight preference for this scheme over the mini-max scheme.
Therefore, we use the SMR-based bit-allocation algorithm
in the NPAC coder. However, for the future, we believe that
the perceptually optimal bit-allocation algorithm for low-rate
coding should be based on both the distribution of the audible
noise and the SMR. This is a compromise between the schemes
that might be better than either approach alone.

VII. VARIABLE-RATE CODING OF THE SHAPE VECTORS

Johnston [30] introduced perceptual entropy as the minimum
bitrate for transmitting audio signals such that there is no perceiv-

TABLE 1I
INSTANTANEOUS MINIMUM, AVERAGE AND INSTANTANEOUS
MAXIMUM RATES (kb/s) FOR SHAPE QUANTIZATION

File Minimum Average Maximum

Female speech 0.0 7.2 11.5

Male speech 0.6 6.9 10.0

Piano 0.0 8.7 11.3

Orchestral 0.9 7.7 10.8

TABLE 1II
BIT ALLOCATION TO CODE A FRAME OF DATA

Data Long Frame Short Frame
Shape Quantization 81 25
Gain Quantization 37 14
Window Switching Flag 1 1
Gain Quantization Flag 1 0
Total 120 40

able difference between the original and coded signal. Based on
the perceptual entropy criterion, it is possible to use a lossy com-
pression scheme to code an audio signal without any perceivable
distortion at a bit rate equal to its perceptual entropy.

We conducted an experiment to calculate the number of bits
required for each frame of data to achieve transparent quantiza-
tion of the shape vectors. To estimate the number of bits needed
to achieve transparent coding of the spectral shapes, we use the
SMR in each critical band and determine the number of required
bits by using the corresponding rate-distortion (approximated)
line. Table II shows the instantaneous minimum, the average and
the instantaneous maximum bit rates for the shape quantization
of the transform coefficients for different audio signals. Note
that some frames are temporally masked; therefore no bits are
required to code the shapes.

McCourt in [31] reports that for a fixed-rate narrow-band
coder, a minimum of 11 kb/s is required to perform transparent
adaptive vector quantization of the shape vectors. Although the
maximumrates shown in Table Il are comparable to the minimum
rate reported in [31], the average required rates are much lower
than that rate. One conclusion from Table II is that the NPAC
coder can provide high quality audio for narrow-band inputs
in a source-controlled variable-rate scenario with a significant
saving in average rate, but with a reasonable ceiling on the
maximum number of bits.

VIII. PERFORMANCE EVALUATION

The NPAC coder has been designed to compress narrow-band
audio signals. In the coder, different processing units have been
designed to efficiently reduce the bit rate while maintaining ac-
ceptable audio quality free of annoying artifacts.

We have implemented the proposed coder in the C language.
The source code was written for flexible experimentation and
not optimized for execution speed. Nevertheless, the coder runs
in real time on a computer using a 450 MHz Pentium processor.

The number of bits used to code each frame of the input data
is 120 (for a long frame) and 40 (for a short frame), i.e., 1 bit
per sample. Almost all of the bits were spent to code the normal-
ized transform coefficients and the gains. Table III shows the bit
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allocation for a long and a short frame of data when the NPAC
coder operates at 8 kb/s (note that the coder operates without the
gain adjustment module).

A. Subjective Evaluation

For many wide-band audio coders operating around 100
kb/s/channel, the compression process is transparent for most
input materials. Crucial testing involves known difficult-to-code
material. In low-rate coding of narrow-band audio signals, some
distortion is inevitable. A wide range of material must be tested
to ascertain that the distortion is not annoying. In our case, we
chose a representative set of narrow-band audio files including
various types of music, single instrumental music, single and
multispeaker speech, and speech with background noise for
testing the NPAC coder.

We have compared the quality of the coded signals using
NPAC, the RealAudio® music coder operating at 8 kb/s, the Re-
alAudio speech coder operating at 8.5 kb/s and the G.729 speech
coder [32] operating at 8 kb/s. The quality of the coded sig-
nals were evaluated through informal listening tests. Eight test
narrow-band audio signals (band-limited to 50-3600 Hz sam-
ples at 8000 Hz) including English female speech, English male
speech, soprano, multispeaker, and various music types (piano,
guitar, rock and orchestral music) were presented over head-
phones to five listeners. None of the test passages was used in
training the quantizers of the NPAC coder.

In the listening test, the compressed signals were distinguish-
able from the original narrow-band signals. However, the pur-
pose of the test was to ascertain whether the distortions in the
output signals were annoying and to rank the outputs for the dif-
ferent coders for each audio passage. Due to narrow-band nature
of the input, we expected the quality at the best of circumstances
to be similar to that of AM broadcast radio.

At 8 kb/s, the listeners unanimously agreed that the NPAC
coder delivered significantly better quality than the RealAudio
music coder for most music passages and never performed
worse than the RealAudio music coder. For all speech signals,
the NPAC coder provided much better quality than the Re-
alAudio music coder.

Compared to the G.729 coder and the 8.5 kb/s RealAudio
speech coder, the listeners preferred the quality of almost all
compressed signals using the NPAC coder. The exceptions were
for the files containing a single speaker. Even for these cases,
the quality was not far below that of the speech coders. Based
on our experiments the NPAC coder works well as long as there
is no strong harmonic structure due to voiced speech. In the case
of the pseudo-periodicity in parts of the input signal, due to the
sensitivity of the human ear to small variations of the harmonic
structure, some distortion is perceived.

The NPAC met the expectations for the test passages, i.e., no
annoying artifacts (e.g., block edge effects, annoying roughness,
large Noise-to-Mask-Ratio in different critical bands). However,
some enhancements should be made to the NPAC coder in order
to achieve the same quality for single speaker passages as the
quality delivered by speech-specific coders such as G.729.

3RealAudio is a trademark of RealNetworks, Inc.

IX. CONCLUSION

We have introduced the NPAC coder which is appropriate
for a wide variety of narrow-band audio signals. In order to
achieve high compression, this coder employs a variety of per-
ception-based algorithms to account for the irrelevant parts of
the input signal. Vector quantization is used to exploit interco-
efficient dependencies in the scale factors as well as the normal-
ized shape vectors. The new algorithms used in the coder in-
clude a perceptual error measure in training the codebooks and
selecting the best codewords which takes into account the au-
dible parts of the quantization noise, a perception-based bit-al-
location algorithm and a predictive scheme to vector quantize
the scale factors.

We have used the signal-to-mask ratio (SMR) measure and
the empirically determined rate-distortion line to find the re-
quired bit rate for the transparent quantization of the spectral
shapes in each critical band. The flexibility of the coder makes
it possible to trade off quality versus rate for applications such as
packet-based data networks. This coder can easily be modified
to accommodate a wider range of input signals with different
bandwidths and sampling rates.
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