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Abstract
For the purpose of improving Bandwidth Extension (BWE) of
narrowband speech, we continue our recent work on the positive
effect of exploiting the temporal correlation of speech on the
dependence between speech frequency bands. We have shown
that such memory inclusion into MFCC speech parametrization
translates into higher highband certainty. In the work presented
herein, we employ VQ to estimate highband discrete entropies,
thus refining our analysis of the effect of memory inclusion on
increasing highband certainty. Moreover, we extend our pre-
vious analysis to LSF parameters. We further construct a BWE
system that exploits our memory inclusion technique, thus trans-
lating highband certainty gains into practical BWE performance
improvement as measured by the objective quality of recon-
structed speech. Results show that memory inclusion decreases
the log-Spectral Distortion of the extended highband speech by
as much as 1 dB corresponding to more than 14% relative.
Index Terms: Bandwidth Extension, Mutual Information.

1. Introduction
In traditional telephone networks, speech bandwidth is limited
to the 0.3–3.4 kHz range. As a result, narrowband speech
has sound quality inferior to its wideband counterpart and it
shows reduced intelligibility especially for consonant sounds.
Wideband speech reconstruction through Bandwidth Extension
(BWE) attempts to regenerate the low (20–300 Hz) and high-
band (3.4–7 kHz) signals lost during the filtering processes
employed in traditional networks, thereby providing backward
compatibility with existing networks.

BWE is based on the assumption that narrowband speech
correlates closely with the highband signal, and thus, given
some a priori information about the nature of this correlation,
the higher frequency speech content can be estimated. Although
significant research has been published on BWE techniques,
few researchers have investigated the correlation assumption be-
tween the narrow and highband spectral envelopes. In [1], a
rough lower bound on the Mutual Information (MI) between
narrow and high frequency bands was derived. This initial at-
tempt, however, did not present a meaningful conclusion in
terms of BWE. This work was extended in [2] to quantify the
certainty about the high band given the narrow band by deter-
mining the ratio of the MI between the two bands to the discrete
entropy of the high band. The authors show that this ratio (rep-
resenting the dependence between the two bands) is quite low.
Despite this low dependence, BWE schemes have continued to
use memoryless mapping between spectra of both bands.

In our recent work [3], we exploited the considerable tempo-
ral correlation properties of speech by including memory in Mel

Frequency Cepstral Coefficient (MFCC) speech parametrization
(through delta features). These features are obtained through
linearly weighted differences between neighbouring conven-
tional static feature vectors. Similar to [2] and [4], MI and
highband entropy are estimated using the numerical method of
stochastic integration, where the marginal and joint distributions
of the narrow and high band parameterizations are modelled
by Gaussian mixture models (GMMs) for both static and ex-
tended (static+delta) acoustic spaces. Our results showed that
such memory inclusion into speech parametrization translates
into higher highband certainty (as measured by the ratio of MI to
discrete high band entropy). Replacing half of the static features
(per speech vector) by delta coefficients results in a 216% rela-
tive increase of highband certainty. By varying the widths of the
window of static feature vectors involved in the estimation of the
delta features, we demonstrated that the greatest gains in high-
band certainty were those corresponding to short-term memory
inclusion (t � 160 msec), representing roughly inter-phoneme
temporal information. Phonemes with mostly highband energy,
e.g., fricatives, stand to have the most benefit of such short-term
triphone memory inclusion. Since BWE schemes generally per-
form poorly when reconstructing such phonemes, we concluded
that the performance of such BWE schemes is expected to be
considerably improved by triphone-specific memory inclusion.

We continue this work by extending the analysis to Line
Spectral Frequencies (LSFs). LSFs are widely used in speech
coding, and are particularly attractive for BWE for their quan-
tization error resilience and perceptual significance properties.
Furthermore, we improve the accuracy of our discrete highband
entropy estimates (used to estimate highband certainty) through
vector quantization (VQ) of the highband feature vector space,
rather than using the scalar quantization approximation of [2].

Finally, we translate the highband certainty gains obtained
through memory inclusion into practical BWE performance im-
provement by incorporating our technique in an LP-based dual-
mode BWE system [5]. Objective analysis of the reconstructed
speech quality shows that memory inclusion decreases the log-
Spectral Distortion (SD) of the extended highband speech (ver-
sus that obtained by BWE with conventional static features) by
as much as 1 dB corresponding to > 14% relative.

2. Information measure estimation
Representing the narrow and high bands by the continuous (vec-
tor) variables X and Y , respectively, the mutual information can
be written in terms of the joint and marginal pdf s as

I(X; Y ) =

∫
ΩY

∫
ΩX

fXY (x, y) log2

(
fXY (x, y)

fX(x)fY (y)

)
dxdy. (1)
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Following [2] and [4], we model the densities using the
GMM fGMM (x, y) =

∑M
m=1 αmfG(x, y|θm), where M is the

number of mixture components, αm is the mth mixture weight
and fG(·) denotes the mutlivariate Gaussian distribution defined
by the mean vector and covariance matrix in θm = {μm, Cm}.

Rewriting Eq. (1) as I(X; Y ) = E
[
log2

(
fXY (x,y)

fX(x)fY (y)

)]
and re-

placing the expectation operator by the sample mean yields

(for N samples) I(X; Y ) ≈ 1
N

∑N
n=1 log2

(
fXY (xn,yn)

fX (xn)fY (yn)

)
.

Thus, MI can be estimated (in bits) using numerical integration
by substituting the pdf s for their GMM estimates; i.e.,

Î(X; Y ) =
1

N

N∑
n=1

log2

(
fGMM (xn, yn)

fGMM (xn)fGMM (yn)

)
. (2)

Similarly, an estimate of the differential entropy of Y can be
obtained by ĥ(Y ) = − 1

N

∑N
n=1 log2 (fGMM (yn)). Since

ĥ(Y ) is susceptible to variable scaling, the discrete entropy
H(Y ) provides a more consistent estimate of highband self-
information. Following [2], we approximated H(Y ) in [3] by
H(Y ) ≈ ĥ(Y ) − log2(Δ

K), where K is the dimension of the
vector Y . This approximation is only valid if the quantiza-
tion step-size Δ is small enough such that the pdf of Y can be
considered flat in each quantization bin (high-rate assumption).
Moreover, since this approximation implies scalar quantization
of the continuous space of Y , a certain distortion is introduced
which increases with the dimensionality, K, of Y (in [3] and in
this work, we use a maximum K=6).

By rather employing VQ of the Y space, we obtain more
accurate H(Y ) estimates through VQ’s space filling, shape, and
memory advantages over scalar quantization [6]. Using a code-
book size of 256, we perform VQ using the Lloyd training algo-
rithm [7] (k-means clustering) with Euclidean distances as the
distortion measure. This results in a codebook with minimum
mean distortion estimated over all 256 cells for a training-set
of 105 MFCC/LSF feature vectors obtained from the TIMIT
speech corpus [8]. Accordingly, if i is the VQ cell index and
Vi is the ith cell, then the discrete highband entropy is estimated
by

H(Y ) = −
∑

i

PYi(y) log2

(
PYi(y)

)
, (3)

where PYi(y) = P (Y = y ∈ Vi) = N(y∈Vi)

105 .

3. Speech parametrization and modelling
In our previous work, [3], we chose MFCCs to parameterize the
narrow and high bands since they can be directly related to SD
[9]; an objective speech quality measure widely used to assess
the performance of spectral envelope quantizers. Furthermore,
as MFCCs are calculated using a DCT, they have the desir-
able property of being decorrelated for different speech classes.
MFCCs were shown to provide the highest class separability
among most common spectral envelope parameters [10]. The
advantage in terms of our work is that employing MFCCs results
in GMMs with higher discriminative ability between different
speech classes, which in turn results in more accurate modelling
of the acoustic space, and hence, better MI estimates.

LSFs are particularly attractive for BWE systems due to
their properties of robustness against quantization noise and per-
ceptual significance. Accordingly, we extend our analysis of
the effect of memory inclusion on highband certainty to LSF
parameters. Although LSFs are less discriminative of speech

classes than MFCCs, their resilience to quantization noise ren-
der our H(Y ) estimates more accurate than those obtained us-
ing MFCCs. Moreover, the perceptual significance of LSFs
(where properties of formants and valleys can be related to LSF
pairs) implies the improved ability of GMMs to capture percep-
tually significant characteristics of speech through modelling the
(LSF-parameterized) acoustic space. More importantly, LSFs
have the important advantage of being easily convertible into
linear prediction (LP) coefficients, and hence, coupled with an
excitation estimate, can be directly used for BWE. In addition,
SD can be straightforwardly estimated from LP-coefficients.

We explicitly capture speech temporal information by in-
cluding memory directly in the spectral envelope parametriza-
tion in the form of delta coefficients appended to the MFCC/LSF
vectors. Delta coefficients are obtained from the static coef-
ficient vectors by a first-order regression implemented through
linearly weighted differences between neighbouring static vec-
tors. Since immediately successive frames show only minor dif-
ferences between their parameters, the trajectory of parameter
variation with time is more accurately and easily identified as
the time separation between the involved static frames increases.
Hence, the difference weights increase in proportion to the dis-
tance (in frames) between the two static vectors whose differ-
ence is being evaluated. Delta coefficients are calculated via:

δt =

∑Θ
θ=1 θ(ct+θ − ct−θ)

2
∑Θ

θ=1 θ2
, (4)

where δt is a delta coefficient vector at time t computed from
the corresponding static coefficient vectors ct−θ to ct+θ , and Θ
specifies the number of neighbouring static frames to consider.

Speech parametrization is detailed in [3] for MFCCs. LSF
parametrization follows in a similar manner where narrow-
band and highband speech are obtained through bandpass (0.3–
3.4 kHz) and highpass (3.7–8 kHz) filtering of the TIMIT wide-
band speech, followed by linear prediction and conversion to
LSFs. Delta coefficients are then calculated by Eq. (4) and ap-
pended to the static vectors for the extended space case. As the
ratio of highband to narrowband energy represents an important
measure of dependence between both bands, frame log-energy
(and its delta coefficient) was also appended to feature vectors
of each band in the static (and extended) space case(s).

GMM modelling of the MFCC/LSF spaces is performed as
described in [3], where a single GMM, with 107 full covari-
ance mixtures, is used to model the approximately 40 English
phonemes. To increase the amount of available data, 20 msec
frames with 50% overlap were extracted form the 3696 train-
ing and 1344 test speech files available in the TIMIT database,
resulting in 1,126,746 training and 411,620 test frames.

4. Effect of memory inclusion
Our analysis in [3] led us to conclude that narrowband delta
features contain no information about the static high band, and
hence, replacing or appending narrowband static coefficients by
their delta ones adds no benefits. In contrast, including mem-
ory in both narrow and high bands results in significant gains
in both MI and highband certainty. Accordingly, the analy-
sis that follows considers the latter case only. The extent of
memory included (represented by the number of neighbouring
static vectors, Θ, involved in the estimation of the delta coef-
ficients) was also shown to have a considerable impact on the
increase in highband certainty. The greatest gains in highband
certainty were those corresponding to short-term memory inclu-
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Fig. 1: Ratio of MI to highband entropy ( I
H

) versus Θ for the
MFCC and LSF extended spaces. The I

H
ratios for the static

spaces with Dim(X, Y ) = (10, 6) are also shown for reference.

Dim(X, Y ) I(X; Y ) H(Y ) I(X;Y )
H(Y )

βmax

(10,6) 1.59 7.82 20.3% 17.5%
MFCCs

(5,3) 1.48 7.87 18.8% 19.1%

(10,6) 0.84 6.67 12.6% 20.2%
LSFs

(5,3) 1.18 7.93 14.9% 17.9%

Table 1: Information measures (in bits) and highband certainty
results for the MFCC and LSF static spaces.

sion (Θ � 8 ≡ t � 160 msec), representing roughly inter-
phoneme temporal information.

Let X and Y represent the static MFCC/LSF vectors of the
narrow and high bands, respectively, with ΔX and ΔY repre-
senting the corresponding delta coefficient vectors. Then, the
increase in certainty about the high band is given by

β � I(X,ΔX ; Y, ΔY )

H(Y, ΔY )
− I(X; Y )

H(Y )
, (5)

where the first fraction represents the highband certainty for the
extended space, and the second that of the static space.

Using GMMs to estimate I(·; ·) per Eq. (2), and VQ of the
highband feature vectors to estimate H(·) per Eq. (3), we obtain
the highband certainty results illustrated in Fig. 1 for varying
widths, Θ, of the time window used to calculate delta features.
Fig. 1 shows the estimated highband certainty for the extended
MFCC/LSF spaces, with Dim(X, ΔX , Y, ΔY )=(5,5,3,3), ver-
sus two reference static spaces with Dim(X, Y )=(10,6). The
extended space are, thus, obtained by replacing half the static
features by the corresponding delta ones. Table 1 additionally
lists the results obtained for the case where the extended spaces
are obtained by appending the static spaces. Table 1 also lists
the maximum increase in highband certainty, βmax.1

Using βmax and the highband certainty results for the static
spaces of Table 1, the relative increase in highband certainty due
to memory inclusion reaches a maximum of 102% for the static

1The highband certainty results of our previous work in [3] deviate
from those of Table 1 above due to the afore-mentioned distortion intro-
duced by the scalar quantization approximation used for the estimation
of the discrete higbhand entropy, H(Y ), particularly for increasing K .
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Fig. 2: The dual-mode bandwidth extension system.

(5,3) MFCC space, and 160% for the (10,6) LSF space. As we
concluded in [3], this clearly demonstrates the strong effect of
memory inclusion on increasing highband certainty, and conse-
quently, BWE performance. Fig. 1 further illustrates this effect.

For the static spaces considered in Table 1, both MI and
highband certainty figures show that MFCC parameters outper-
form LSFs in terms of capturing information mutual to both
narrow and high bands. This observation is further confirmed
by the fact that both MI and highband certainty increase with
increasing MFCC dimensionality, in contrast to their decrease
using LSFs. Furthermore, while the absolute gains in highband
certainty due to memory inclusion are equivalent for both sets of
parameters, Fig. 1 shows the superiority of MFCCs over LSFs in
terms of overall highband certainty for the same dimensionality.
Notwithstanding the advantages of LSFs over MFCCs; namely
quantization noise robustness and more accurate and straightfor-
ward speech reconstruction, the observations above lead us to
conclude that, in principle, BWE based on MFCC parametriza-
tion with memory inclusion is inherently better.

5. BWE with memory inclusion
To evaluate the effect of memory inclusion on BWE perfor-
mance, we employ a dual-model BWE system based on that of
[5] shown in Fig. 2. This system exploits equalization to ex-
pand the apparent bandwidth of narrowband speech. Equaliza-
tion is applied both at low frequencies as well as at high fre-
quencies to push the bandwidth out to 100 Hz at the low end
and up to 4 kHz at the high end. The equalization algorithm is
more accurate than any estimation algorithm can be in this fre-
quency range. Furthermore, as an additional benefit, the equal-
ized signal is bandpass-filtered (3–4 kHz range), followed by
Gaussian noise modulation, to produce an enhanced excitation
signal which is used for signal reconstruction in the region above
4 kHz. GMM statistical estimation is used to generate the com-
plementary spectrum, represented by LSFs, in the range from
4 to 7 kHz. The estimated highband LSFs, converted to LP-
coefficients, are then used together with the estimated excitation
signal to reconstruct the highband speech through LP synthesis.

In addition, an excitation gain, g, is used to scale the syn-
thesized highband components such that the energy of the re-
constructed highband components is equal to that of the corre-
sponding frequency band in the orginal wideband speech used
for GMM training. The excitation gain is calculated as the
square root of the energy ratio of the original highband signal
to the resynthesized one. As g is assumed to be correlated with
the narrowband spectrum, it can be statistically estimated from
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Fig. 3: BWE performance with memory inclusion (bottom) ver-
sus performance with no memory inclusion (top).

narrowband parameters.
Thus, we employ two GMMs to statistically model the cor-

relation between the narrowband LSFs (and frame log-energy)
and a) highband LSFs, and b) the excitation gain. Ideally, any
benefit of incorporating memory into BWE should entail as lit-
tle added complexity as possible. Accordingly, we evaluate
BWE performance for an extended feature space that is obtained
by replacing–rather than appending–half the static features by
their delta coefficients, thus preserving dimensionality. Memory
inclusion, thus implemented, consequently involves no added
computational requirements or increase in amount of GMM
training data. Noteworthy is that Table 1 further shows that
replacing half the static features, rather than appending them,
results in higher relative increase in highband certainty.

Hence, in conformity with the dimensionality of the feature
spaces of Fig. 1, we use a static space of Dim(X,Y )=(10,6)
as the reference for BWE performance. For this static case,
a GMM models the distribution of the wideband random vec-
tor (RV) consisting of 9 narrowband LSFs, the narrowband
frame log-energy, and 6 highband LSFs, while the second GMM
models that of the RV consisting of the 10 narrowband fea-
tures as above, in addition to the excitation gain, g. The ex-
tended space case with Dim(X, ΔX , Y, ΔY )=(5,5,3,3) employs
a GMM modelling the distribution of a wideband RV consisting
of 4 narrowband LSFs, their 4 delta coefficients, the narrowband
frame log-energy and its delta coefficient, 3 highband LSFs and
their 3 delta coefficients. The second GMM models the same
narrowband features in addition to the excitation gain, g.

We evaluate BWE performance in the missing 3.4–7 kHz
band by the SD of the extended highband speech, given by:

SD2 =
1

π

ωh∫
ωl

(
20 log10

g

|AY (ejω)| ·
|ÂY (ejω)|

ĝ

)2

dω (6)

where ωl and ωh are the cutoff frequencies of the missing high
band, g and AY (ejω) are the highband excitation gain and fre-
quency spectrum of the original wideband signal, respectively,
while ĝ and ÂY (ejω) are the reconstructed highband excitation
gain and frequency spectrum as estimated by GMMs.

Fig. 3 shows the improvement in BWE performance result-
ing from incorporating memory inclusion through delta features.
The mere exploitation of delta features–regardless of how much
memory is actually used to estimate them–clearly results in a
considerable objective quality improvement of about 1 dB on
average corresponding to 14% relative SD decrease, approxi-
mately. Inspecting Fig. 3 more closely for the effect of the extent

of incorporated memory (represented by Θ), reveals that quality
improvement is greatest for, roughly, 5 � Θ � 10 correspond-
ing to 100 � t � 200 ms, reaching a maximum SD relative de-
crease of 14.28%. This time range corresponds to triphone du-
rations, asserting our conclusion in [3] that BWE schemes are
expected to benefit mostly through such short-term memory in-
clusion. Expectedly, this range is further in accordance with that
representing the highest gains in highband certainty per Fig. 1,
further confirming the strong correlation between highband cer-
tainty and BWE reconstructed speech quality.

6. Conclusions and future work
We review the information theoretic justification of incorporat-
ing memory inclusion in BWE of narrowband speech. By using
VQ, we improve our previous estimates in [3] of the effect of the
amount of memory included in speech parametrization on the
extended speech quality. We extend the analysis to LSFs, widely
used in BWE schemes. We further translate the highband cer-
tainty gains obtained by memory inclusion into practical BWE
performance improvement through embedding dynamic speech
features in an LP-based BWE system. Objective analysis of
reconstructed highband speech confirms the positive effect of
memory inclusion on improving BWE performance. Our results
in Section 4 lead us to further conclude that MFCCs are supe-
rior to LSFs in terms of retaining information mutual to both
narrow and high speech frequency bands, thus making them the
preferred means of parametrization in terms of the potential for
improving BWE performance. Hence, the implementation of
MFCC-based BWE will be the focus of our future work.
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