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Abstract

We present a novel MFCC-based scheme for the Bandwidth

Extension (BWE) of narrowband speech. BWE is based on

the assumption that narrowband speech (0.3–3.4 kHz) cor-

relates closely with the highband signal (3.4–7 kHz), en-

abling estimation of the highband frequency content given the

narrow band. While BWE schemes have traditionally used

LP-based parametrizations, our recent work has shown that

MFCC parametrization results in higher correlation between

both bands reaching twice that using LSFs. By employing

high-resolution IDCT of highband MFCCs obtained from nar-

rowband MFCCs by statistical estimation, we achieve high-

quality highband power spectra from which the time-domain

speech signal can be reconstructed. Implementing this scheme

for BWE translates the higher correlation advantage of MFCCs

into BWE performance superior to that obtained using LSFs,

as shown by improvements in log-spectral distortion as well as

Itakura-based measures (the latter improving by up to 13%).

Index Terms: Bandwidth extension, high-resolution IDCT,

highband certainty, mutual information, source-filter model

1. Background and introduction

In traditional telephone networks, speech bandwidth is limited

to the 0.3–3.4 kHz range. As a result, narrowband speech

has sound quality inferior to its wideband counterpart and it

shows reduced intelligibility especially for consonant sounds.

Wideband speech reconstruction through Bandwidth Extension

(BWE) attempts to regenerate the low (20–300 Hz) and high-

band (3.4–7 kHz) signals lost during the filtering processes

employed in traditional networks, thereby providing backward

compatibility with existing networks.

Traditionally, BWE research efforts have primarily used

linear predictive (LP) techniques. By using such techniques, the

reconstruction problem is divided into two separate tasks; form-

ing a highband residual error (excitation) signal, and, recreat-

ing a set of higband linear predictive coefficients (LPCs). Once

these two components have been generated, the highband resid-

ual excites the highband LP synthesis filter to regenerate the

missing highband signal that can then be added to the available

narrowband signal to generate wideband speech. The problem

of reconstructing highband features from the corresponding nar-

rowband ones has been addressed using two approaches; code-

book mapping and statistical estimation. The underlying as-

sumption is that narrowband speech correlates closely with the

highband signal, and hence, the higher frequency speech con-

tent can be estimated from the narrowband signal.

In contrast to the ample research published on BWE tech-

niques, the correlation assumption between the narrow- and

high-band spectral envelopes has received little attention. Cer-

tainty about the high band given the narrow band was quantified

in [1] as the ratio of Mutual Information (MI) between the two

bands to the discrete entropy of the high band. The authors

show that this ratio (representing correlation between the two

bands) is quite low. Accordingly, it was concluded that existing

BWE schemes perform reasonably, not because they accurately

predict the true high band, but rather by extending the narrow

band such that the overall wideband signal sounds pleasant.

More recently, we investigated in [2] the effect of the type

of speech parametrization on the resulting correlation between

narrow and high frequency bands (quantified by highband cer-

tainty). In particular, we considered Mel-Frequency Cepstral

Coefficients (MFCCs) as well as Line Spectral Frequencies

(LSFs). We showed that, for similar dimensionalities, MFCCs

result in highband certainties that can reach almost twice as

those resulting from LSFs. We argued that this higher correla-

tion can be attributed to the Discrete Cosine Transform (DCT)

employed in MFCC generation. DCT results in a decorrelation

of cepstral coefficients leading to higher separability between

different speech classes, with the advantage that MFCCs result

in feature space modelling more discriminative of these classes.

These results are confirmed by the findings of [3] which show

MFCCs to have the highest speech class separability and sec-

ond highest MI content among several speech parametrizations.

LSFs, on the other hand, are widely used in speech coding, and

are particularly attractive for BWE for their quantization error

resilience and perceptual significance properties (where proper-

ties of formants and valleys can be related to LSF pairs). More

importantly, LSFs have the important advantage of being easily

convertible into LP coefficients, and hence, coupled with an ex-

citation estimate, can be directly used for BWE. In contrast, re-

construction of the time-domain speech signal from MFCCs is

more difficult at best. Based on these results for the correlation

between speech frequency bands, we concluded in [2] that—

notwithstanding the LSF advantage of straightforward speech

reconstruction—MFCC-based BWE is inherently better.

Despite MFCCs’ advantages over LSFs in terms of speech

class separability, the difficulty of synthesizing speech from

MFCCs has restricted their use to fields that do not require

inverting MFCC vectors back into the original time-domain

speech signals, e.g., automatic speech recognition. This diffi-

culty arises from the non-invertibility of several steps employed

in MFCC generation; using the magnitude of the complex spec-

trum, mel-scale filterbank binning and higher-order cepstral co-

efficient truncation. Consequently, all BWE techniques encoun-

tered in the literature are based on LP representations of the

wideband (or highband) signals from which the wideband (or

highband) frequency content is reconstructed (and added to the
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narrowband signal). The availability of the narrowband sig-

nal, however, has allowed researchers to investigate the effect

of several types of narrowband parametrizations on increasing

the correlation between narrowband feature vectors and LP-

based wideband (or highband) feature vectors. Examples in-

clude [4] whose narrowband feature vectors consist of a mixture

of auto-correlation coefficients, zero-crossing rate, normalized

frame-energy, gradient index, local kurtosis, and the spectral

centroid. A rare use of MFCCs in BWE is that of [5] which

employs a Vector Quantization (VQ) codebook to map MFCC-

parametrized narrowband signals to LSF wideband signals. In-

formal listening tests in [5] show clear preference for wideband

speech reconstructed using the narrowband MFCC representa-

tion compared to that of the conventional LP-based representa-

tion, despite the reported increase in Log-Spectral Distortion

(LSD). Despite the BWE performance improvements result-

ing from such alternative narrowband parametrizations, these

improvements are limited by the wideband (or highband) LP-

based representation. This limitation arises from the lower cor-

relation between the alternative narrowband features and the

LP-based highband ones (e.g., narrowband MFCCs correlate

less with highband LSFs than with highband MFCCs).

In the work presented herein, we exploit the superiority of

MFCCs over LSFs in terms of frequency bands’ correlation by

using MFCCs to represent both narrow- and high-band spectral

envelopes for BWE (rather than limiting their use to the nar-

row band only as in [5]). To reconstruct highband speech from

MFCCs (obtained by Gaussian Mixture Model (GMM) statis-

tical estimation from input narrowband MFCCs), we employ

high-resolution inverse DCT (IDCT) similar to that of [6] re-

sulting in fine mel-scale cepstra, from which the linear power

spectra can be recreated. The high-resolution IDCT effectively

uses cosine functions to interpolate between mel-filterbank log-

energies to reconstruct the cepstrum with finer detail (other-

wise lost due to mel-filterbank binning). As in [7], we use

a source-filter model to reconstruct speech from the estimated

power spectra through inverse Fourier transform to obtain auto-

correlation coefficients, to which the Levinson-Durbin recur-

sion is applied. From the LPCs thus obtained, speech is synthe-

sized by exciting the corresponding LP synthesis filters by an

enhanced excitation signal [8] obtained from the narrow band.

This MFCC inversion scheme thus eliminates the requirements

of pitch estimation and voicing decisions of the more com-

plex sinusoidal model techniques (employed in the field of dis-

tributed speech recognition), such as that of [9].

In contrast to [5], our MFCC-based BWE technique shows

an LSD objective quality improvement of about 0.14 dB (about

3%) compared to LSF-based BWE with the same GMM com-

plexity. More importantly, by using two variants of the more

subjectively correlated Itakura-Saito distortion, we find a 7.5%

improvement in highband spectral shape reconstruction due to

the use of MFCCs rather than LSFs, reaching 13.2% when nor-

malization for the effect of the reconstructed highband gain is

applied. These results demonstrate the superiority of MFCC-

based BWE over conventional LP-based schemes.

2. Review of highband certainty results

As stated above, highband certainty (representing the correla-

tion between narrow and high frequency bands) is defined as

the ratio of mutual information to discrete highband entropy. As

described in [2], we estimate the mutual information, I(X, Y ),

between narrow- and high-band feature vectors (X and Y , re-

spectively) using GMMs to model the marginal and joint dis-

Table 1: Information measures (in bits) and highband certainty.

Dim(X, Y ) I(X; Y ) H(Y ) I(X;Y )
H(Y )

(10,6) 1.59 7.82 20.3%
MFCCs

(5,3) 1.48 7.87 18.8%

(10,6) 0.84 7.88 10.7%
LSFs

(5,3) 1.18 7.90 14.9%

tributions of both sets of vectors, while the discrete highband

entropy, H(Y ), is estimated using VQ of the highband vectors1.

Table 1 shows the information measure results obtained for

both MFCCs and LSFs for two different narrow- and high-band

dimensionalities. We observe that despite the differing high-

band dimensionality or type of parametrization used, our dis-

crete highband entropy estimates, H(Y ), are almost equal2.

This confirms the convergence of our VQ estimates to the

true highband entropy. With highband entropy estimates being

equal, both MI and highband certainty figures show that MFCCs

outperform LSFs in terms of capturing information mutual to

both bands. This observation is further confirmed by the fact

that both MI and highband certainty increase with increasing

MFCC dimensionality, in contrast to their decrease using LSFs.

3. MFCC parametrization

Our application of the well-known MFCC parametrization of

speech for the narrowband (0–4 kHz) and highband (4–8 kHz)

signals (obtained by filtering the wideband speech to be used in

BWE GMM training), is summarized as follows:

1. Pre-emphasis: A single-pole (at z =−0.97) high-pass filter

is used to emphasize the highband formants of amplitudes

lower than those of narrowband formants.

2. Windowing: A Hamming window is used to mitigate the

edge effect of discontinuities due to framing. We use 20 ms

frames with 50% overlap.

3. Magnitude spectrum: FFT (Fast Fourier transform) is ap-

plied followed by a magnitude operation.

4. Mel-scale filterbank binning: Mel-scale triangular filters are

applied to the magnitude spectrum with FFT coefficients

within each filter squared and summed resulting in mel-scale

filterbank energies. We use 15 filters for the 0–4 kHz narrow

band and 6 for the 4–8 kHz high band.

5. Log operation: Filterbank log-energies are obtained.

6. DCT: Type III DCT of the log-energies is applied per

cn =

√

2

N

N−1
∑

k=0

(log Yk) cos

(

(2k + 1)nπ

2N

)

,

where cn is the nth MFCC (0 ≤ n ≤ N − 1), N is the

number of mel-scale filters, and Yk (or Xk) is the kth high-

band (or narrowband) mel-scale filter energy. Table 1 indi-

cates that correlation between the two MFCC-parametrized

frequency bands is almost twice that when using LSFs at

Dim(X,Y ) = (10,6). Accordingly, we use these dimension-

alities for the parameters of our BWE scheme to emphasize

the performance improvement using MFCCs versus LSFs,

with c0 included since the ratio of band energies represents

an important measure of dependence between both bands.

1Please refer to [2] for complete details on: (a) the estimation of I

and H , and (b), the training and testing data sets used for Table 1.
2The discrete highband entropy estimates of Table 1 in [2] were im-

proved upon by better implementation of the LBG training algorithm,
resulting in the estimates of Table 1 above.
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4. Highband speech synthesis

Two of the six steps of MFCC generation involve non-invertible

loss of information; discarding phase information in Step 3 and

the many-to-one mapping of the mel-scale filterbank binning of

Step 4. The DCT of Step 6 also involves potential loss of infor-

mation depending on whether the MFCC vectors are truncated.

Starting with narrowband speech input (sampled at 8 kHz),

we recover from the lost information (after upsampling to

16 kHz and lowpass filtering with fc = 4 kHz) as follows:

4.1. High-resolution IDCT

Since the narrow band is available as BWE input, no inversion

is needed for narrowband MFCCs. These are calculated only

to be used as inputs to the maximum-likelihood estimation of

highband parameters from the trained GMMs described in Sec-

tion 5.1. Since no truncation was applied to highband MFCCs

in Step 6 above, the highband log-energies can be perfectly re-

constructed by simple IDCT from the highband MFCCs esti-

mated from the GMMs. These 6 log-energies can be viewed

as scaled samples of the cepstrum at the center frequencies of

the mel-scale filters, insufficient to recreate a spectrum. Finer

cepstral detail can, however, be obtained by interpolating from

these log-energies by increasing the resolution of the IDCT per

log Ŷ
k
′ =

√

2

N

N−1
∑

n=0

cn cos

(

(2k′ + 1)nπ

2iN

)

,

where 0 ≤ k′ ≤ iN−1, N = 6, and i is an interpolation fac-

tor. Thus, The total number of log-energies (or cepstral sam-

ples) to be estimated in the 4–8 kHz range is iN . The inter-

polation factor, i, is determined by the desired mel-scale res-

olution. Using the frequency linear to mel-scale conversion;

fmel = 2595 log10 (1 + fHz/700) , we obtain for 1 mel resolu-

tion in the fHz1
= 4 to fHz2

= 8 kHz band

i =
⌈

fmel2
− fmel1

N + 1

⌉

= 100,

resulting in a fine 600-sample cepstral resolution in the high-

band range. Thus, we effectively interpolate between the mel-

frequency band centers using the DCT basis functions them-

selves as the interpolating functions [6].

4.2. MFCC preservation

Given a fixed highband MFCC dimensionality (nmax=5 corre-

sponding to 6 cepstral coefficients as noted in Step 6), the choice

for the number, N (where 6≤ N ≤ 600), of highband mel-

scale filters is influenced by two opposing distortions. As N in-

creases, there will be more cepstral samples (log-energies) to in-

terpolate from, resulting in fewer intermediate samples to inter-

polate (and hence, lower distortion due to interpolation errors).

However, an increasing N also involves truncation of an in-

creasing number of higher-order cepstral coefficients, which in

turn translates into IDCT distortion since the truncated cepstral

coefficients are assumed to equal zero. By measuring the Eu-

clidean distances between original cepstral samples (obtained

just prior to the DCT of Step 6) and those samples resulting

from high-resolution IDCT involving truncation for various val-

ues of N , we were able to conclude empirically that IDCT dis-

tortions resulting from MFCC truncation exceed those due to

errors of interpolation from fewer log-energies. In fact, the in-

terpolation performed implicitly by the high-resolution IDCT is

quite accurate, leading to our choice in Step 6 to preserve cep-

stral coefficients by setting N equal to MFCC dimensionality.

4.3. Highband LP synthesis

By exponentiation of the interpolated cepstra followed by mel-

to-linear conversion, we obtain highband power spectra. Com-

puting the inverse Fourier transform of the two-sided power

spectra results in the auto-correlation coefficients, which can

then be used to solve the Yule-Walker equations by means of the

Levinson-Durbin recursion. Thus, we obtain highband LPCs

minimizing the forward predictor mean-square-error. These

LPCs represent the coefficients of the all-pole vocal tract filter.

4.4. Highband excitation signal

Rather than using a voicing-based model (based on the pitch

extracted from the narrowband signal for voiced segments) as

in [7] and [9], we use the narrowband signal equalized in the

3.4–4 kHz band to provide the excitation signal. As shown in

[8], Gaussian noise modulation by the 3–4 kHz signal envelope

(containing pitch harmonics) results in a superior excitation sig-

nal that is robust to differences in phonemes and speaker gender,

leading to excellent highband signal reconstruction. In contrast,

[7] uses a simple series of pitch pulses or white noise as the

excitation for voiced and unvoiced segments, respectively. The

loss of phase information (in Step 3 of MFCC calculation) is

thus partially mitigated by using the equalized narrowband sig-

nal for excitation generation (thereby using phase information

in the 3–4 kHz band to reconstruct highband phase). Moreover,

the unimportance of phase for speech intelligibility [10] makes

the accurate estimation of phase unwarranted.

5. MFCC-based BWE

5.1. System description

We implement MFCC-based BWE by modifying the dual-mode

system detailed in [2] to incorporate MFCC parametrization and

inversion as described in Sections 3 and 4. Shown in Figure 1,

our system is based on that of [8] which exploits equalization to

extend the bandwidth of narrowband speech up to 4 kHz. Be-

sides being more accurate than any estimation algorithm in this

frequency range, equalization up to 4 kHz also allows extrac-

tion of the enhanced excitation signal described in Section 4.4.

GMM statistical estimation is used to generate the complemen-

tary spectrum, represented by LSFs/MFCCs, in the 4–8 kHz

band. The estimated highband parameters, converted to LPCs,

are then used together with the estimated excitation signal to

reconstruct highband speech through LP synthesis. In addition,

an excitation gain, g, is used to scale the synthesized highband

components such that their energy is equal to that of the corre-

sponding frequency band in the original wideband speech used

for GMM training. Being a perceptual property, this gain im-

proves the subjective quality of the extended speech. As g is

assumed to be correlated with the narrowband spectrum, it can

also be statistically estimated from narrowband parameters.

5.2. Results and analysis

We evaluate BWE performance in the missing 4–7 kHz band

(thus, only considering the effect of GMM modelling without

the equalization effects in the 3.4–4 kHz band) by LSD (dB);

d2
LSD

=
1

π

∫ ωh

ωl

(

20 log10

g

|Y (ejω)|
− 20 log10

ĝ

|Ŷ (ejω)|

)2

dω,

where ωl and ωh are the cutoff frequencies of the missing high

band, g and Y (ejω) are the highband gain and frequency spec-

trum of the original wideband signal, respectively, while ĝ and
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Figure 1: Dual-mode MFCC-based BWE system.

Ŷ (ejω) are those of the GMM-estimated reconstructed signal.

While LSD is widely used for evaluating spectral envelope

degradation due to its tractability and historic value, it does not

take into account the perceptual importance of some aspects

of the LP speech spectrum representation (e.g., LSD weights

bandwidth differences for formants and valleys equally). In

contrast, the Itakura-Saito distortion [11] has some perceptual

relevance in that it weights differences in the LP spectra more

heavily for peaks (which generally occur ar formant locations)

than for valleys. However, due to its sensitivity to LP gain, a

gain-optimized variant; the Itakura distortion [11], was derived

by finding the LP model gains that minimize the Itakura-Saito

distortion, thus rendering it gain-independent. This variant was

shown in [12] to have a correlation of 0.73 with the subjective

Diagnostic Acceptability Measure (versus 0.63 for LSD).

In our context, the Itakura-Saito distortion is given by

d
IS

(

g2

|Y |
2 , ĝ2

|Ŷ |
2

)

=
1

2π

∫ π

−π

[

g2/|Y |2

ĝ2/|Ŷ |
2
− log

g2/|Y |2

ĝ2/|Ŷ |
2
− 1

]

dω.

The Itakura-Saito distortion does not fulfill the symmetry con-

dition for distance metrics. However, a symmetrized version;

the COSH measure, can be constructed by the arithmetic mean;

d
COSH

=
1

2

[

d
IS

(

g2

|Y |
2 , ĝ2

|Ŷ |
2

)

+ d
IS

(

ĝ2

|Ŷ |
2 , g2

|Y |
2

)]

.

In a similar manner, we symmetrize the nonsymmetric gain-

optimized Itakura distortion, given by

d
It

(

g2

|Y |
2 , ĝ2

|Ŷ |
2

)

, min
ĝ>0

d
IS

(

g2

|Y |
2 , ĝ2

|Ŷ |
2

)

= log

(

ŷT RY ŷ

g2

)

,

by the arithmetic mean;

d
I
=

1

2

[

d
It

(

g2

|Y |
2 , ĝ2

|Ŷ |
2

)

+ d
It

(

ĝ2

|Ŷ |
2 , g2

|Y |
2

)]

,

where ŷT is the reconstructed LPC vector, and RY is the

Toeplitz autocorrelation matrix of the original signal LP model.

Table 2 shows the distortion results obtained for MFCC-

and LSF-based BWE. In contrast to [5], our MFCC-based

scheme does improve d
LSD

. Although minor in comparison to

the highband certainty gains of Table 1, it is important to note

that the 0.14 dB d
LSD

improvement was achieved with no in-

crease in GMM complexity or data requirements of the LSF-

based system. In comparison, the earlier version [13] of the

dual-mode system in [8] achieves a highband d
LSD

reduction of

0.96 dB by employing equalization and GMM statistical estima-

tion compared to VQ codebook mapping. The significance of

Table 2: LSD and Itakura-based distortion results.

d
LSD

(dB) d
COSH

d
I

LSFs 4.74 7.95 0.79

MFCCs 4.60 7.35 0.69

Improvement 0.14 (2.9%) 0.60 (7.5%) 0.10 (13.2%)

our d
LSD

result further becomes evident by a comparison to that

of [4], whose considerably more complex speaker-independent

HMM-based system requires increasing the number of HMM

states from 16 to 64 to achieve similar d
LSD

reduction.

Finally, by employing d
COSH

and d
I

to compare MFCC-

based BWE performance to that of LSFs, not only do we gain a

more subjectively correlated measure of performance improve-

ment, but we also gain a separation of the highband spectral

shape-related improvement from errors in highband gain recon-

struction (by exploiting the gain-insensitivity of d
I
). Accord-

ingly, Table 2 shows a higher perceptually-relevant improve-

ment of 7.5% due to improved highband spectral shape recon-

struction, further reaching 13.2% when the effect of inaccura-

cies in highband gain reconstruction is eliminated.
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