
Memory-Based Approximation of the Gaussian Mixture Model Framework

for Bandwidth Extension of Narrowband Speech

Amr H. Nour-Eldin, Peter Kabal

Department of Electrical & Computer Engineering
McGill University, Montréal, Québec, Canada
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Abstract

In this paper, we extend our previous work on exploiting speech

temporal properties to improve Bandwidth Extension (BWE) of

narrowband speech using Gaussian Mixture Models (GMMs).

By quantifying temporal properties through information theo-

retic measures and using delta features, we have shown that nar-

rowband memory significantly increases certainty about high-

band parameters. However, as delta features are non-invertible,

they can not be directly used to reconstruct highband frequency

content. In the work presented herein, we embed temporal prop-

erties indirectly into the GMM structure through a memory-

dependent tree-based approach to extend representation of the

narrow band. In particular, sequences of past frames are pro-

gressively used to grow the GMM in a tree-like fashion. This

growth approach results in reliable estimates for the GMM pa-

rameters such that Maximum Likelihood estimation is no longer

necessary, thus circumventing the complexity accompanying

high-dimensionality GMM training.

Index Terms: Bandwidth extension, GMMs, speech memory.

1. Introduction

In traditional telephone networks, speech bandwidth is limited

to the 0.3–3.4 kHz range. As a result, narrowband speech has

sound quality inferior to its wideband counterpart and has re-

duced intelligibility especially for consonant sounds. Wideband

speech reconstruction through Bandwidth Extension (BWE) at-

tempts to regenerate the highband (3.4–8 kHz) frequency con-

tent lost during the filtering processes employed in traditional

networks, thereby providing backward compatibility with ex-

isting networks

BWE is based on the assumption that narrowband speech

correlates with the highband signal, and thus, given some a pri-

ori information about the nature of this correlation, the higher

frequency speech content can be estimated. Considerable re-

search has been dedicated to modelling this correlation, typi-

cally through either codebook mapping, or Gaussian Mixture

Models (GMMs). While codebook mapping techniques dis-

cretize the acoustic space through Vector Quantization (VQ),

GMMs provide a continuous approximation, and hence, outper-

form VQ-based methods. First used in [1] for the purpose of

BWE, GMMs provide minimum mean square error (MMSE)

estimates for highband spectral envelopes. Using linear predic-

tive (LP) techniques, the statistically-estimated LP coefficients

of said envelopes can, then, be combined with a highband resid-

ual error (excitation) signal in an LP synthesis filter to regener-

ate the missing highband signal. This signal is, in turn, added to

the available narrowband signal to generate wideband speech.

In contrast, the correlation assumption between the narrow

and highband spectral envelopes has itself received less atten-

tion. In [2], the certainty about the high band given the nar-

row band was quantified by determining the ratio of the Mu-

tual Information (MI) between the two bands to the discrete en-

tropy of the high band. The authors show that this ratio (rep-

resenting the dependence between the two bands) is quite low.

The relation of this ratio to BWE performance was further con-

firmed in [3] by deriving an upper bound on achievable BWE

performance—represented by log-Spectral Distortion (LSD)—

given a certain amount of MI and highband entropy. Despite the

low dependence, BWE schemes have, for the most part, contin-

ued to use memoryless mapping between spectra of both bands.

These schemes perform reasonably, however, not because they

accurately predict the true high band, but rather by extending

the narrow band such that the overall wideband signal sounds

pleasant. Exceptions to the pervasiveness of memoryless map-

ping in BWE are based mainly on the implementation of high-

band spectrum envelope estimation using Hidden Markov Mod-

els (HMMs); e.g., [4]. Such HMM-based techniques are, how-

ever, marked by higher complexity and training data require-

ments, which increase with the number of HMM states. To mit-

igate the potential complexity and data insufficiency problems,

first-order Markov models are assumed. This limits such HMM-

based techniques to modelling the temporal dependencies be-

tween consecutive signal frames only, effectively restricting the

ability of the model to capture only 20–40 ms of memory. It has

been shown, however, that speech temporal information may

extend up to 1000 ms [5], with energies of modulation spectra

(spectra of the temporal envelopes of the signal) peaking around

4–5 Hz corresponding to 200–250 ms [6].

In Section 2, we provide the motivation of the current work

presented herein by summarizing our previous work on trans-

ferring memory-based information theoretic gains into practical

BWE performance. In Section 3, we extend the GMM formula-

tion to take account of speech memory, and present a novel tree-

based growth technique to construct extended GMMs. Finally,

in Section 4, we present BWE results using the constructed

memory-dependent extended GMM.

2. Review of previous work and motivation

In [7], we extended the work of [2] by quantifying the role

of speech memory in increasing certainty about the high

band. In particular, we transformed the static spectral enve-

lope parametrization into a dynamic one by making use of

delta features to represent memory at varying lengths around

static frames. Delta features can be applied to any form of

parametrization, and provide two advantages over first-order

Markov chains. First, they capture temporal dynamics around
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(b) static MFCC space, Dim(X,∆X, Y,∆Y)=(10,0,6,0)

(a) static LSF space, Dim(X,∆X, Y,∆Y)=(10,0,6,0)

(d) dynamic MFCC space, Dim(X,∆X, Y,∆Y)=(5,5,3,3)

(c) dynamic LSF space, Dim(X,∆X, Y,∆Y)=(5,5,3,3)

Figure 1: Highband certainty, I

H
, versus span of memory, T ,

for static and dynamic (static+delta) MFCC/LSF feature spaces

with narrow and highband dimensionalities of 10 and 6, resp.

static frames beyond the immediately neighbouring frames, and

secondly, being a many-to-one transformation, they condense

temporal information into a single vector that can be used to ex-

tend or replace part of the corresponding static feature vectors.

This latter property eliminates increases in GMM complexity,

and hence, requires no additional computational resources or

data amounts required for statistical training.

Highband certainty is defined as the ratio of MI, I(⋅ ; ⋅), to

discrete highband entropy, H(⋅). Representing static vectors of

the narrow and high bands by X and Y , respectively, with ∆X

and ∆Y representing the corresponding delta coefficient vec-

tors, the highband certainty obtained with static and dynamic

front-ends can then be written as
I(X;Y )

H(Y )
and

I(X,∆X;Y,∆Y)

H(Y,∆Y)
, re-

spectively. Using GMMs and VQ of the highband feature vec-

tors to estimate I and H , respectively, we obtained the highband

certainty results illustrated in Fig. 1 for varying widths, T , of the

time window used to calculate delta features (dynamic spaces

are obtained by replacing half the static features used in the ref-

erence static spaces by delta ones). Figure 1 shows the consid-

erable highband certainty gains achieved by memory inclusion,

yet with no increase in front-end dimensionality. The gains peak

for 60 ≲ T ≲ 260 ms, which includes the 200 ≲ T ≲ 250 ms

syllabic range. These results, thus, agree with the modulation

spectra findings of [6] which show speech information content

to be highest at the syllabic rate of 4–5 Hz.

In [8], we constructed a BWE system that makes use of

delta features to take advantage of the highband certainty gains

shown above. Average LSD performance improvements of ap-

proximately 5–7% were shown. While these improvements

seem modest compared to the considerable information theo-

retic gains of Fig. 1, it should be noted that LSD performance is

as strongly dependent on the GMM-based gain estimates used

to generate excitation, as it is dependent on the spectral enve-

lope LPC estimates. The highband certainty gains measured

above consider only spectral envelopes. As such, information

theoretic gains should rather be viewed as upper bounds on LSD

performance. Moreover, as delta features are obtained by non-

causal FIR filtering of static features with zeroes on the unit

circle (differentiator), they are not practically invertible as the

inverse filter is marginally stable. Consequently, delta features

can not be used for LPC reconstruction, translating into a de-

crease of static feature dimensionality when overall highband

dimensionality is fixed (as in the dynamic systems of Fig. 1).

The resulting loss in highband spectral information is, how-

ever, compensated by the larger MI gains emanating from the

GMM’s superior cross-band covariances (since delta features

have higher cross-band correlation compared to static features).

These drawbacks represent the motivation to pursue mem-

ory exploitation through a different avenue. In particular, we

seek a technique that preserves highband dimensionality, does

not require increases in training data requirements, and further

considers only causal memory for the benefit of real-time im-

plementation. Such a technique should also provide flexibility

in regards to the extent of higher-order memory modelled; the

primary advantage of delta features and deficiency of first-order

HMM-based methods.

3. Memory-based GMM formulation

3.1. GMM definition

GMMs model the joint density of two random variables; x and

y, (narrow and highband representations, resp., in the context of

BWE) as a mixture of M component densities; i.e.,

f
GMM
(x, y) =

M

∑
m=1

αmf
G
(x, y∣λm), (1)

where M is the number of mixture components, αm is the

mth mixture weight (prior probability) and f
G
(⋅) denotes the

multivariate Gaussian distribution defined by the mean vec-

tor µm and covariance matrix Cm in λm = {µm,Cm}. Typi-

cally, the GMM parameters; (αm, λm), are estimated by Max-

imum Likelihood (ML) estimation iteratively using the popular

Expectation-Maximization (EM) algorithm.

3.2. Joint density MMSE estimation

For a known x, the function ŷ
mse
= F (x) that minimizes the

mean square error; ε
mse
= E [∥y − F (x)∥2], is the Expectation

(dropping the subscript in p
G
)

E [y ∣x ] =∫
Ry

y p(y∣x) dy = ∫
Ry

y
p(y, x)
p(x) dy,

=∫
Ry

y

M

∑
i=1

αi p(y, x∣λi)
M

∑
j=1

αj p(x∣λj)
dy,

=

M

∑
i=1

αi p(x∣λi)∫
Ry

y p(y∣x,λi) dy
M

∑
j=1

αj p(x∣λj)
,

=
M

∑
i=1

hi(x) E [y∣x,λi] ,

(2)

and since p(y∣x,λi) ≜ fG
(y∣x,λi) is Gaussian by definition in

Eq. (1), ∴ E [y∣x,λi] = µy

i +C
yx

i C
xx−1

i (x − µx
i ).

3.3. Extending the GMM

In the GMM definition and MMSE formulation detailed above,

it is assumed that the narrow and highband representations are

static; i.e., x and y can be written as xt and yt. By fix-

ing the dimensionality of the unknown highband representa-

tion; yt, the straightforward extension of the formulation to in-

clude first-order memory can be obtained by substituting the
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static narrowband representation; xt, by an augmented version:

[xt, xt−τ ]T , using the narrowband features at time t−τ , and re-

placing the joint densities of [yt, xt]T —defined by (I,αi, λi)
for i = 1, . . . , I—by (K,αk, λk) where k = 1, . . . ,K, K ≥ I

and (K,αk, λk) ⊥⊥1(I,αi, λi). While theoretically simple, this

extension, in practice, treats the extended GMM—(K,αk, λk),
modelling the joint density of zT ≜ [yt, xt, xt−τ ]T —as a com-

pletely new GMM to be EM trained without making any use

of the prior knowledge about [yt, xt]T readily available in

(I,αi, λi). Moreover, the increased narrowband dimensional-

ity requires a proportional increase in training data2.

Alternatively, we propose the following approximation to

(K,αk, λk) by exploiting the prior knowledge in the reliably

ML-estimated (I,αi, λi). Let (J,αj , λj), where j = 1, . . . , J ,

represent the marginal density of xt trained independently; i.e.,

(I,αi, λi) ⊥⊥ (J,αj , λj). Given the lower dimensionality of xt

compared to [yt, xt]T , we are guaranteed that—for J ≤ I and

same amount of training data—(J,αj , λj)ML estimates are, at

least, as reliable as those of (I,αi, λi). Viewing the component

Gaussians in (I,αi, λi) as parent states at time t, and those in

(J,αj , λj) as potential child states at time t−τ (using the well-

accepted assumption that speech is locally stationary), we can

approximate (K,αk, λk) by

(K̂, α̂k, λ̂k) = (I ⋅J,αij , λij)
∀ i = 1, . . . , I; j = 1, . . . , J. (3)

Rather than estimate (αij , λij) through EM, we make use

of the available training data, as well as the information in

(I,αi, λi) and (J,αj , λj), by partitioning training data into

subsets Qij , with each subset consisting of the augmented

data; zT , with maximum joint likelihood given the density pair

(αi, αj , λi, λj); i.e.,

Qij ≜
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z ∈ Rz ∶

argmax
λt∈{λi}

p(yt, xt∣λt) = λi ,

argmax
λt−τ ∈{λj}

p(xt−τ ∣λt−τ) = λj

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (4)

which we then use to generate estimates for (αij , λij) per

α̂ij = N (Qij)
∑
i,j

N (Qij) , (5a)

µ̂ij = 1

N (Qij) ∑z∈Qij

z , (5b)

Ĉij = 1

N (Qij) ∑z∈Qij

(z − µij) (z − µij)T . (5c)

Under the local stationarity assumption, we exploit higher-

order memory by extending the partitioning step of Eq. (4)

using (J,αj , λj) at progressive time shifts of t − lτ where

l = 1, . . . , L; i.e., the augmented data subsets generalize to

Q
itjt−τ...jt−Lτ ≜
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z ∈ Rz ∶

argmax
λt∈{λi}

p( yt, xt∣λt) = λit ,

argmax
λt−τ ∈{λj}

p( xt−τ ∣λt−τ) = λjt−τ ,
...

argmax
λt−Lτ ∈{λj}

p(xt−Lτ ∣λt−Lτ) = λjt−Lτ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

1⊥⊥ denotes independent of.
2Empirically, a hundred data points are typically needed to obtain

reliable estimates of each GMM parameter, see Eq. (6) in [7] for details.

Using (α̂
itjt−τ...jt−Lτ , λ̂itjt−τ...jt−Lτ ) obtained by substitut-

ing Eq. (6) into Eq. (5), the derivation of the MMSE estimate

ŷt
mse
= F (xt, xt−τ , . . ., xt−Lτ) can be performed in a manner

similar to that of Eq. (2). In particular, it can be shown that

(for ease of notation, we simplify [xt, xt−τ , . . ., xt−Lτ ] by xτ,L,

itjt−τ. . .jt−Lτ by ijτ,L, and dropping the hats on α̂ and λ̂)

ŷt
mse
= ∑

ijτ,L

h
ijτ,L(xτ,L) ⋅ E [yt∣xτ,L, λijτ,L] , (7)

where

h
ijτ,L(xτ,L) =

α
ijτ,L p(xτ,L∣λijτ,L)

∑
ijτ,L

α
ijτ,L p(xτ,L∣λijτ,L) , (8)

and

E [yt∣xτ,L, λijτ,L] = µy

ijτ,L +
C

yxτ,L

ijτ,L

C
xτ,L xτ,L

ijτ,L

(xτ,L − µ
xτ,L

ijτ,L). (9)

An L-order GMM constructed progressively using Eqs. (6)

and (5) is denoted by (I ⋅JL, α
ijτ,L

, λ
ijτ,L
)

3.4. Addressing data insufficiency concerns by pruning

For an l-order GMM with Kl = I⋅J l densities and a training data

set of fixed size, the occupancy rates N(Q
ijτ,l
) decrease expo-

nentially as l increases3. As the reliability of the (α
ijτ,l

, λ
ijτ,l)

estimates is strongly dependent on occupancy rates, we must

ensure that N(Q
ijτ,l
) ≥ Nmin ∀ ijτ,l. Accordingly, at each

step l in the progressive GMM-tree construction, we prune the

total number of densities; Kl by merging all child densities of

the same immediate parent into a single pass-through density;

i.e., ∀ ijτ,l ∶ if N(Q
ijτ,l
) < Nmin, set

Jt−lτ = 1, (10a)

Q
ijτ,l
= Q

ijτ,l−1
, (10b)

re-estimate Eqs. (5), then set

C
yxτ,l

ijτ,l
=
⎡⎢⎢⎢⎢⎢⎣

C
yxτ,l−1

ijτ,l−1

0Dim(yt)×Dim(xt)

⎤⎥⎥⎥⎥⎥⎦
. (10c)

Thus, Eqs. (10) ensure that the pruned pass-through density is

identical to its parent in terms of its contribution to ŷt
mse

; i.e.,

for the affected ijτ,l: α
ijτ,l
≡ α

ijτ,l−1
and λ

ijτ,l
≡ λ

ijτ,l−1
.

3.5. Reliability of the memory-based (αijτ,l , λijτ,l)
Reliability of the (α

ijτ,l
, λ

ijτ,l
) estimates was empirically mea-

sured by comparing LSD performance on test data4 over the

following pairs of GMMs;

(a) a set of memory-based GMMs; {(α
ijτ=1,L

, λ
ijτ=1,L

)},
with I = 128, J = 2, L = 1, . . . ,5, and Nmin = 100;

(b) an independent set of GMMs; {(αk, λk)}, with dimen-

sionalities and number of densities equal to those in (a),

but k-means initialized and EM trained with 100 iterations.

For all five pairs, the EM-trained GMMs of set (b) outper-

formed the memory-based ones of set (a) by a relative differ-

ence of d
LSD
< 2%, confirming reliability of the memory-based

approximations of Section 3.3.

3Suitable I values for static GMM-based BWE systems are
I = 64,128. Even with Jmin = 2, the potential for data insufficiency
problems for L ≳ 2 is clear.

4See Section 4 for details on the BWE system and data used.
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4. Implementation and results

4.1. MFCC-based BWE system description

We showed in [9] that high-quality highband speech reconstruc-

tion from MFCCs is feasible using a simple cepstral-domain

interpolation scheme based on high-resolution inverse Discrete

Cosine Transform (IDCT). Through this scheme, we were able

to exploit the superior correlation properties of MFCCs—as

shown by Fig. 1—to implement a static MFCC-based BWE sys-

tem that outperforms conventional LP-based ones. This BWE

system also exploits equalization to extend the bandwidth of

narrowband speech up to 4 kHz which allows extraction of an

enhanced excitation signal required for highband LP-synthesis

as described in Section 1. In addition, an excitation gain ratio,

gr , is used to scale the synthesized highband components such

that their energy is equal to that of the corresponding frequency

band in the original wideband speech used for GMM training.

Being a perceptual property, this gain improves the subjective

quality of the extended speech. It is also statistically estimated

from narrowband parameters.

Accordingly, we reuse this system by constructing two

memory-based GMMs (α
ijτ,L

, λ
ijτ,L
); where y is the high-

band MFCC representation in the first GMM, and y = gr in the

second. Training is performed using 20 msec frames with 50%

overlap extracted form the TIMIT database (∼3.1 hrs of training

data and ∼16 mins of core test data used on this analysis).

4.2. Results and analysis

We evaluate BWE performance in the missing 4–8 kHz band by

LSD (dB);

d
2

LSD
= 1

π
∫

ωh

ωl

(20 log10 g

∣Y (ejω)∣ − 20 log10
ĝ

∣Ŷ (ejω)∣ )
2

dω,

where ωl and ωh are the cutoff frequencies of the missing high

band, g and Y (ejω) are the highband gain and frequency spec-

trum of the original wideband signal, respectively, while ĝ and

Ŷ (ejω) are those of the GMM-estimated reconstructed signal.

While LSD is widely used for evaluating spectral envelope

degradation due to its tractability and historic value, it does not

take into account the perceptual importance of some aspects of

the LP speech spectrum representation (e.g., it weights band-

width differences for formants and valleys equally). Accord-

ingly, we extend our performance analysis using PESQ; Percep-

tual Evaluation of Speech Quality [10], which was developed to

model subjective tests commonly used in telecommunications,

particularly mean opinion scores (MOS) covering a scale of 1

(bad) to 5 (excellent).

Figure 2 shows LSD as well as PESQ results for two BWE

implementations of the memory-based GMMs (α
ijτ,L

, λ
ijτ,L
);

represented by △ and ◻, both with I = 128, Nmin = 500, and

τ = 4 (i.e., wideband vectors are augmented using past narrow-

band information at 40 msec shifts), while J△ = 2 and J◻ = 4.

Based on the shown results, we conclude:

1. Our memory-based approach results in clear performance

improvements, both objectively as demonstrated by LSD

improvements, as well as perceptually as indicated by

PESQ results. Maximum LSD improvements reach

∼ 12–13%, while PESQ ones reach ∼ 8–10%. These rel-

ative improvements exceed those achieved by memory in-

clusion through delta features as described in [8].

2. Both systems reach a steady-state level of improvement at

∼ 120–200 msec, coinciding with the region of maximum

highband certainty gains measured in Fig. 1.
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Figure 2: LSD and PESQ performance (solid and dashed lines,

resp.) versus order of memory, T = lτ , for the two BWE sys-

tems (αijτ,L , λijτ,L);△ and ◻, with J△ = 2 and J◻ = 4.

3. As expected, system ◻ generally outperforms system△ for

the same order of memory. This follows from the the fact

that J◻ > J△ (with more degrees of freedom available for

better modelling), and confirms the reliability of our tree-

based GMM construction approach.

4. The importance of pruning to ensure reliability of the pro-

gressively growing (α
ijτ,L , λijτ,L) becomes quite clear by

noting the variability of improvement rate with increasing

T = lτ (and consequently, larger K). Particularly, the

withdrawal of performance for higher-order memory indi-

cates that the chosen pruning threshold; Nmin = 500 fails

to compensate for the error in (α
ijτ,L , λijτ,L) estimates as

K becomes overwhelmingly large.
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