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ABSTRACT

A fine grain scalable coding for audio signals is proposed where the

entropy coding of the quantizer outputs is made scalable. By con-

structing a Huffman-like coding tree where internal nodes can be

mapped to reconstruction points, we can prune the tree to control the

distortion of the quantizer. Our results show the proposed method

improves existing similar work and significantly outperforms scal-

able coding based on reconstruction error quantization as used in

practical systems, eg. MPEG-4 audio.

Index Terms— Scalable coding, Entropy coding, Quantization

1. INTRODUCTION

Bit-rate scalability has been a necessary requirement in multimedia

communications. Without the need to re-encode the original signal,

it allows for improving the quality of an audio/video signal as more

of a total bit stream becomes available, or lowering the quality if

channel condition deteriorates. Scalability can also provide robust-

ness to packet loss for transmission over packet networks. In such

systems, very robust channel coding can be performed for the core

bitstream so that all the receivers can receive it without loss. The

rest of the bitstream is sent with normal channel coding. Thus, if

the packets are lost, the signal can be still reconstructed at base level

quality.

Several scalable coding systems have been proposed so far, in-

cluding using wavelet transforms [1], bit-plane based coding [2, 3],

and fine-grain scalable coding [4, 5]. One popular scalable coding

system, at the core of AAC scalable coding [6], is a system based on

reconstruction error quantization (REQ). In REQ (Fig. 1), the signal

is quantized by an optimal quantizer designed for a minimum bit rate

and acceptable distortion (the base layer). Enhancement layers im-

prove the quality of the base layer signal, refining the quantization

by subtracting the quantized signal from the original. This error sig-

nal is quantized, encoded and transmitted as the first enhancement

layer. This enhancement step can be repeated, to form an ordered set

of layers. From the base up, each additional layer that the receiver

receives is used to refine the quality of the decoded signal.

In terms of Rate-Distortion (RD) performance, REQ is opti-

mal for the Mean Square Error (MSE) criterion. It asymptotically

achieves the performance of an equivalent non-scalable coding sys-

tem [7] if the rate is measured by the entropy of resulting output

symbols. However, in practical coding systems symbols need to be
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Fig. 1. Salable Audio Coding based on REQ

encoded in a bitstream using an entropy coding scheme, which adds

an overhead for each layer.

In the example system in Fig. 1, if Huffman coding is performed

separately for each layer output, the upper bound of the bitrate for

each layer is the entropy of the symbols plus one bit; thus the upper

bound of the combined layers is the entropy of all symbols combined

plus N bits, where N is the number of layers.

Scalable entropy coding was proposed in [8] assuming a general

set of random variables representing quantizer reconstruction points.

In this paper, we show that it is important to consider the positions of

the reconstruction points within the quantizer intervals, and discuss

Rate-Distortion issues. A new set of equations are derived for the

general case where the reconstruction points can take any arbitrary

positions within the quantizer intervals. This joint entropy-scalable

coding (JESC) scheme is applied to the quantizer used by the AAC

codec, and we compare JESC to REQ scalable coding and the pro-

gressive entropy coding (PEC) scheme of [8].

2. JOINT ENTROPY-SCALABLE CODING

Huffman coding is a very common entropy coding technique. The

codebook is generated by assigning symbols to leaves on an unbal-

anced binary tree (Fig. 2). To build the coding tree nodes are created

by joining either leaves or nodes with lowest probability until all

leaves are part of a single tree.

Suppose we want to reduce the bitrate of the information of the

stream of symbols. We can do so by pruning the tree, for example

at node s(1,6) in Fig. 2: in the resulting bitstream, the code 000 will

then appear with probability 0.04. However, in the context of the

original system, this codeword has no meaning since it cannot be

mapped to any symbol.
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Fig. 2. Huffman coding tree
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Fig. 3. Creating new quantizers by merging the nodes

2.1. Relating internal nodes of a Huffman tree to quantization
reconstruction points

Now consider the case where symbols represent the outputs of a

scalar quantizer. In the construction of a regular Huffman tree we

just search for the two reconstruction points of the smallest prob-

abilities to make a new node. However, if we ensure also that at

a joining step the leaves represent quantizer outputs that are neigh-

bouring Voronoi regions, the resulting node can be assigned a new

reconstruction point and be treated as a leaf. Thus, we can effec-

tively get a new quantizer if the tree is pruned at that node. Such a

set of quantizers is shown in Fig. 3, where the tree describes a set of

quantizers (Q1, Q2, ...) resulting from pruning a quantizer-encoding

tree from the bottom up.

As the tree gets pruned, each new quantizer has a smaller en-

tropy and larger distortion compared to the previous one. The reduc-

tion of the average bit rate of the quantizer is obtained by

ΔB = w1b+ w2b− (w1 + w2)(b− 1) = w1 + w2 = W (1)

where b is the number of bits assigned to two nodes before merging

and w1 and w2 the probabilities of the nodes or leaves. By pruning

the tree at different possible nodes, we can create a large set of quan-

tizers and hence obtain fine grain bit rate scalability. We note that

the receiver needs to know which tree to use to decode a given bit-

stream; thus, a number indicating the pruning level (that is, the quan-

tizer index, Q1, Q2, . . .) needs to be sent as side information. This

side information is nothing extra compared to the practical scalable

coders (including REQ) where a scale factor is sent for each layer so

that the receiver can know which quantization resolution is used for

them.
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Fig. 4. Merging two reconstruction points in a quantizer

2.2. Merging quantizer regions to build the coding tree

The construction of the scalable entropy coding tree is determined

not only by the probability density function (pdf) of the signal to

be encoded, but also the distortion measure we wish to optimize to.

For a signal x with pdf given by f(x), consider the scalar quantizer

Q(x) with distortion

D = E[e2] =

∫

x

(x−Q(x))2f(x) dx

=
∑
i

WiDi,

(2)

where Di is the conditional distortion in each interval i of the quan-

tizer. Wi is the probability of x ∈ Xi, so if we write x̂i =

Q(x)|x∈Xi ,

Di = E[e2|Xi] =

∫

x∈Xi

(x− x̂i)
2 f(x)

Wi
dx. (3)

To find the difference in distortion for a quantizer that has re-

gions merged as described above, suppose we merge the adjacent

quantizer regions Xk and Xk+1. Now, we have a new quantizer

with slightly higher distortion, with distortion given by

D′ =
∑

i �=k,k+1

WiDi +Wk′Dk′

= D − (WkDk +Wk+1Dk+1) +Wk′Dk′ .

(4)

The difference in distortion between the old and new quantizers can

now be written as ΔD = D′ −D or

ΔD = Wk′Dk′ − (WkDk +Wk+1Dk+1). (5)

Now suppose we want to merge two quantization regions to form

a new interval (See Fig. 4). Changing the reconstruction point of one

interval does not change the distortions of other intervals, so the best

reconstruction point for the new node is obtained by minimizing the

conditional distortion in the new node’s interval,

Dk′ = E[(x− x̂k′)2 | Xk′ ]

=

∫ xk+1

xk

(x− x̂k′)2
f(x)

Wk′
dx,

(6)
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giving

dDk′

dx̂k′
= −2

∫

x∈Xk′

(x− x̂k′)
f(x)

Wk′
dx = 0

⇒ x̂k′ =

∫

x∈Xk′

x
f(x)

Wk′
dx

= E[x | Xk′ ].

(7)

The new distortion Dk′ can be expressed in terms of the condi-

tional expectations of the two merging nodes in their own intervals.

Thus,

Wk′Dk′ = Wk′E[e2 | Xk′ ]

= WkE[e2 | Xk] +Wk+1E[e2 | Xk+1],
(8)

where

E[e2 | Xk] =

∫

x∈Xk

(x− x̂k′)2
f(x)

Wk
dx

=

∫

x∈Xk

[(x− x̂k)
2 + (x̂k − x̂k′)2

+ 2(x− x̂k)(x̂k − x̂k′)]
f(x)

Wk
dx

= Dk + (x̂k − x̂k′)2

+ 2(x̂k − x̂k′)(E[x | Xk]− x̂k),

(9)

and

E[e2 | Xk+1] = Dk+1 + (x̂k+1 − x̂k′)2

+ 2(x̂k+1 − x̂k′)(E[x | Xk+1]− x̂k+1).
(10)

Consequently,

Wk′Dk′ = WkE[e2 | Xk] +Wk+1E[e2 | Xk+1]

= WkDk +Wk+1Dk+1

+Wk(x̂k − x̂k′)2 +Wk+1(x̂k+1 − x̂k′)2

+ 2Wk(x̂k − x̂k′)(E[x | Xk]− x̂k)

+ 2Wk+1(x̂k+1 − x̂k′)(E[x | Xk+1]− x̂k+1),

(11)

which gives us the distortion of the new interval in terms of the new

and old reconstruction points and the weights and conditional expec-

tations of the old nodes.

Finally, using (5) we get

ΔD = Wk(x̂k − x̂k′)2 +Wk+1(x̂k+1 − x̂k′)2

+ 2Wk(x̂k − x̂k′)(x̄k − x̂k)

+ 2Wk+1(x̂k+1 − x̂k′)(x̄k+1 − x̂k+1),

(12)

where the conditional expectations have been replaced by x̄k and

x̄k+1.

Equation (12) gives the distortion increase for a general case

where the reconstruction points can be at arbitrary positions within

quantizer intervals. The new reconstruction point x̂ in this equation

can be obtained as

x̂k′ = E[x | Xk′ ] =
Wk

Wk′
x̄k +

Wk+1

Wk′
x̄k+1. (13)

Now that we have equations giving distortion increase and bit

rate decrease resulting from merging, we need a measure for finding

the best choice of nodes for merging at each step. In Huffman coding

we pick the two nodes which have the smallest probabilities. Here

we need a measure which considers both weights (probabilities) and

the distortion increase resulted from merging. The measure we used

is

M = αΔD2 + βΔB2 = αΔD2 + βΔW 2, (14)

similar to [8]. The weighting parameters α and β were set empiri-

cally to values which gave the best results with α = β = 0.5.

In the following section we discuss a specific case where a Uni-

form Threshold Quantizer (UTQ) is used with the JESC.

3. JESC WITH THE AAC QUANTIZER

The quantization formula which is used in AAC [9] is given by

ix = sgn(x) ∗ nint(Δ|x|0.75 − 0.0946)

x̂ = sgn(x) ∗ ( |ix|
Δ

)
4
3 ,

(15)

where Δ is the quantizer step size (or scale factor) parameter, and

nint() and sgn() denote the nearest integer and signum function. This

quantization formula is based on the assumption that the input signal

is Laplacian. The optimal quantizer for exponential and Laplacian

signals, a special case of exponential signals, is the UTQ with a dead-

zone around zero [10]. In such a quantizer, reconstruction points are

not in the middle of the quantizer intervals and are dependent on the

statistics of the input signal. However, quantization formula in AAC

uses the ratio of the offset to the step size of the quantizer, which

remains the same (0.0946) as the step parameter Δ changes.

Consider a Laplacian signal and let us define r as the ratio of the

offset α to the width of the quantizer intervals1 d, r = α
d

. The offset

α is defined as the distance between the reconstruction point and the

lower threshold of the intervals. Also, let k = b
d

where b is the scale

parameter of the Laplacian distributed signal with zero mean. Then,

it can be shown that r is obtained by

r = k − 1

e
1
k − 1

. (16)

Changing the parameter Δ in the AAC quantization formula is

equivalent to changing the scale parameter of the Laplacian input

signal. Thus, when Δ is not equal to 1 we need to replace k with kΔ

in the above equation, so we get

r = kΔ− 1

e
1

kΔ − 1
. (17)

This relationship of rΔ versus step size parameter Δ is shown

in Fig. 5 for k = 1. It can bee seen that the ratio r is neither con-

stant nor has a linear relation with Δ. Thus (12) provides a good

general distortion increase measure for all types of quantizers where

the reconstruction points can take any positions within the intervals.

1Excluding the dead-zone area where the reconstruction point is in the

middle, i.e. zero.
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Fig. 5. Offset to interval width ratio r versus step size parameter Δ

(k = 1) for AAC quantizer.

4. SIMULATION RESULTS

We compare a 4 layer REQ to our JESC scalable coders. We assume

a 10 bit full quantizer for our JESC system and a set of quantizers

using 3, 2, 2, 2 bits respectively for the base and the 3 enhancement

layers of the REQ system.

As in [7] we assume σ2 = 100. For REQ, each layer quan-

tization uses the AAC quantization formula and Huffman coding

on the quantizer outputs. Figure 6 shows the comparison between

fine grain JESC, the progressive entropy coding (PEC) of [8], and

the REQ scalable coding in terms of bitrate-distortion performance.

The 4 rate-distortion pairs shown by points with dashed bars show

the four possible rates of the REQ scheme, that is, base layer + one

enhancement layer, base layer + two enhancement layers and so on.

It can be seen in average there is a difference of about 4dB between

the JESC and REQ. A one layer REQ performs slightly better than

JESC since in this case the Huffman coding applied directly to the

base layer is more efficient, however JESC becomes more efficient as

more number of layers are used. This shows the REQ becomes more

sub-optimal for rate-distortion performance as the number of layers

is increased. It can also be seen that JESC is performing clearly

better than PEC.

5. CONCLUSION

REQ scalable coding is a practical scalable coding scheme which is

used in MPEG-4 audio coding. In such a coder the entropy coding is

performed separately for each layer and the coder becomes subopti-

mal as the number of layers increases. We propose a scalable coding

method for a single quantizer in which the encoding is performed in

a fine grain manner. The proposed method considerably outperforms

REQ scalable coding and is a suitable replacement for practical scal-

able audio coders. In early future we will consider applying JESC to

VQ as well.
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