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ABSTRACT
In this paper, we present a new method for noise power
spectral density (PSD) matrix estimation based on IMCRA
which consists of two parts. For the auto-PSD (diagonal)
estimation, we propose a modification to IMCRA where a
special level detector is employed to improve the tracking of
non-stationary noise backgrounds. For the cross-PSD (off-
diagonal) estimation, we propose to calculate a smoothed
cross-periodogram by using estimated noise components
derived as residuals after the application of a speech en-
hancement algorithm on the individual microphone signals.
Simulation results show the effectiveness of our proposed
approach in estimating the noise PSD matrix and its robust-
ness against reverberation when used in combination with an
MVDR-based speech enhancement system.

1. INTRODUCTION

In voice communication systems, the speech signal on the
transmitter side is often corrupted by various types of back-
ground acoustic noise. To obtain a high quality speech signal
on the receiver side, it is desired to reduce the noise level
without introducing noticeable distortion to the target speech,
or worst, affecting its intelligibility. To this end, since we do
not have access to the background noise signal, it is neces-
sary to use information about the statistical characteristics of
the noise, especially its second order moments in the form of
the noise power spectral density (PSD).

Existing speech enhancement approaches can be divided
into two main classes depending on whether they employ a
single microphone (SM) versus a microphone array (MA). In
SM approaches, the noise PSD is typically employed to cal-
culate a spectral gain, which in turn is applied to the noisy
speech in the frequency domain to obtain the enhanced speech
[1]. Traditionally, noise PSD estimation has been based on
voice activity detectors (VADs), which restrict the update of
the PSD estimate to periods of speech absence. However,
VADs are often difficult to tune and their reliability deteri-
orates severely at low signal-to-noise ratio (SNR). In recent
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years, alternative estimation approaches have therefore been
proposed that do not directly rely on VAD. In [2], a noise
PSD estimator based on minimum statistics (MS) is studied,
which tracts the minima values of a smoothed PSD estimate
of the noisy signal and multiplies the result by a bias fac-
tor. In the so-called improved minima controlled recursive
averaging (IMCRA) [3], smoothing of the noisy speech pe-
riodogram is controlled by the conditional speech presence
probability, which in turn is estimated based on the results of
minimum tracking iterations. The advantages of IMCRA are
particularly notable in adverse environments involving non-
stationary noise and low input SNR.

The use of MA offers many appealing advantages over
SM in speech enhancement, including the possibility of re-
alizing distortionless noise reduction through additional de-
grees of freedom and added flexibility in handling different
types of interference, such as multiple talker and reverbera-
tion [4]. As in the SM case, the performance of MA tech-
niques strongly depends on side information, especially a
priori knowledge of the PSD matrix of the background noise
and interference. For instance, the PSD matrix plays a key
role in the realization of the miminum variance distortionless
response (MVDR) beamformer and the multi-channel Wiener
filter. However, estimation of the noise PSD matrix, which
consists of auto-PSD (diagonal) and cross-PSD (off-diagonal)
elements, is much more challenging than that of its SM coun-
terpart. The current literature on PSD matrix estimation for
acoustic noise is scarce. In [5, 6], an energy-based VAD is
used to enable the cross-PDS estimation only during speech
pauses. Other recent methods exploit additional assumptions
on the acoustic field, such as diffuse spherically isotropic
noise [7] or known propagation vector of the clean speech
[8]. However, these assumptions are not always realistic and
thus impose severe practical limitations.

In this paper, we present and investigate an improved
method for noise PSD matrix estimation based on IMCRA
which consists of two parts. For the auto-PSD estimation,
we propose a modification to IMCRA where a frequency
dependent level detector is employed to improve the track-
ing of non-stationary noise backgrounds. For the cross-PSD
estimation, we propose to calculate the smoothed cross-
periodogram by using estimated noise components, derived
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as residuals following the application of a selected single
channel speech enhancement algorithm on the individual mi-
crophone signals. Simulation results show the effectiveness
of our proposed approach in estimating the noise PSD ma-
trix, and its robustness against reverberation when used in a
speech enhancement system based on MVDR beamforming.

This paper is organized as follows: Section 2 presents the
notations and problem formulation. The auto-PSD estimator
is discussed in Section 3, where we first review IMCRA and
then propose a modification to improve its tracking ability.
The new IMCRA-based cross-PSD estimator, which employs
estimates of the noise components in the microphone signals,
is presented in Section 4. Simulation results are presented in
Section 5, which is followed by a conclusion in Section 6.

2. PROBLEM FORMULATION

Let us consider an array of M microphones deployed in a
noisy environment in which the noise and desired speech sig-
nals are spatially separated. The noisy speech signal samples
received at the µ-th microphone, µ ∈ {1, ...,M}, can be ex-
pressed as

yµ[m] = sµ[m] + nµ[m] (1)

where sµ[m] is the speech component, nµ[m] is the additive
noise and m is the discrete-time index. Standard short-time
Fourier transform (STFT) analysis is applied to the micro-
phone signals, which are synchronously segmented into over-
lapping frames of length L and frame advance R. The signal
samples in each frame are multiplied by an analysis window,
denoted as w(l), and then mapped to the frequency domain
via the discrete Fourier transform, that is:

Yµ(k, i) =
L−1∑
l=0

yµ(iR+ l)w(l)e−j2πkl/L (2)

where Yµ(k, i) denotes the STFT coefficient of the noisy
speech for frequency bin k, time-frame i and microphone
µ. Accordingly, in the time-frequency domain, (1) can be
expressed as

Yµ(k, i) = Sµ(k, i) +Nµ(k, i) (3)

where Sµ(k, i) and Nµ(k, i) denote the corresponding STFT
coefficients of the speech and noise, respectively.

We model Sµ(k, i) and Nµ(k, i) as zero-mean complex
random variables, uncorrelated across time and frequency; we
also assume that the signal and noise components are mu-
tually independent. In this work, our main interest lies in
the second order statistical properties of the noise STFT, as
represented by the short-time PSD. Specifically, for the time-
frequency point (k, i), let us define

Pµ,ν(k, i) = E{Nµ(k, i)N∗
ν (k, i)} (4)

where E{·} denotes expectation and superscript ∗ indicates
complex conjugation. In the case µ = ν, Pµ,ν(k, i) in (4) is
known as the auto-PSD, while if µ 6= ν, it is called cross-
PSD. Accordingly, the noise PSD matrix can be defined as

P(k, i) =

 P1,1(k, i) · · · P1,M (k, i)
...

. . .
...

PM,1(k, i) · · · PM,M (k, i)

 . (5)

The PSD matrix (5) plays a key role in MA-based speech
enhancement. For some algorithms, such as the MVDR
beamformer and the multi-channel Wiener filter, this matrix
directly determines the spatial filtering being applied to the
microphone signals. For instance, the information contained
in P(k, i) makes it possible to steer a MVDR beamformer
in the direction of a desired speaker while canceling, or re-
ducing the effect of noise from other directions. Similar to
the noise PSD in SM approaches, P(k, i) needs to be esti-
mated from the noisy microphone signals, and the accuracy
of this estimation may greatly affect the performance of the
enhancement algorithm. In particular, poor estimation can
lead to a situation where disturbances from certain directions
are not optimally suppressed, or worse, are amplified by MA
processing [8]. Estimation of the noise PSD matrix is chal-
lenging, not only because of the speech presence and the
noise non-stationarity as in the SM case, but also because of
the additional complexity induced by the spatial dimension.

According to (5), we note that the diagonal elements
of the noise PSD matrix, i.e., Pµ,µ(k, i), are ordinary auto-
PSD and therefore, methods developed for SM are often
applied for their estimation in MA systems. Regarding the
off-diagonal elements or cross-PSD, i.e. Pµ,ν(k, i) for µ 6= ν,
their estimation can also be approached via recursive aver-
aging, as in [5, 6]. Below, we propose improved methods
based on IMCRA for the estimation of both the diagonal and
off-diagonal elements of the noise PSD matrix.

3. AUTO-PSD ESTIMATOR

3.1. Overview of IMCRA

In IMCRA [3], the noise PSD estimate is obtained by re-
cursively averaging past spectral power values of the noisy
speech, using a smoothing parameter which is adjusted by
the speech presence probability in each frequency bin. Math-
ematically, this process for estimating the auto-PSD for the
µ-th microphone can be expressed as

P̂µ,µ(k, i) = α̃µ(k, i)P̂µ,µ(k, i−1)+(1−α̃µ(k, i))|Yµ(k, i)|2
(6)

where
α̃µ(k, i) = α+ (1− α)pµ(k, i) (7)

is the time-varying frequency-dependent smoothing parame-
ter, pµ(k, i) is the speech presence probability conditioned on
|Yµ(k, i)|2 and α is a (fixed) secondary smoothing parameter.
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In a conventional VAD-based algorithm, the noise PSD
would be estimated recursively with smoothing parameter α
when speech is absent, and held constant when it is present.
In contrast, the auto-PSD estimation by IMCRA depends on a
“soft” decision, namely the conditional speech presence prob-
ability pµ(k, i), instead of a binary VAD indicator. In effect,
the noise PSD is continually adapted based on the noisy mea-
surements and the smoothing parameter α̃µ(k, i) is changed
accordingly, i.e. being increased when pµ(k, i) is large and
vice versa. This makes it possible to adjust the integration
time of the estimator depending on the speech activity in each
frequency bin over time.

The speech presence probability is generally biased to-
ward higher values to avoid speech distortion in speech en-
hancement applications. Consequently, the auto-PSD esti-
mation based on recursive averaging would be biased toward
lower values. To offset this effect, a multiplicative bias com-
pensation factor β > 1 is usually applied to the PSD estimator
(6), whose value can be determined based on theoretical con-
siderations but is often set to around 1.5 in practice.

The expression of the conditional speech presence prob-
ability pµ(k, i) in (7) can be obtained based on a Gaussian
statistical model. Specifically, let us define the a posteriori
and a priori SNR as follows, respectively:

γµ(k, i) =
|Yµ(k, i)|2

Pµ,µ(k, i)
, ξµ(k, i) =

E{|Sµ(k, i)|2}
Pµ,µ(k, i)

. (8)

In terms of these quantities, we have

pµ(k, i) =
(

1 +
qµ(k, i)(1 + ξµ(k, i))

1− qµ(k, i)
e
− γµ(k,i)ξµ(k,i)

1+ξµ(k,i)

)−1

(9)
where qµ(k, i) is the a priori probability for speech absence,
which is controlled by the result of the minimum tracking.
Specifically, two iterations of smoothing and minimum track-
ing are employed in IMCRA to estimate qµ(k, i): The first
one provides a rough VAD in each frequency bin while the
second one excludes relatively strong speech components, for
added robustness in the minimum tracking during speech ac-
tivity. The details of this process can be found in [3].

3.2. Proposed Modification to IMCRA

When using IMCRA, a large estimation error may occur after
an abrupt increase in the noise level. In the past, some im-
provements have been suggested to reduce this tracking delay,
e.g. [9]. Here, we present a simple yet effective scheme based
on energy detection which exploits the different spectral dis-
tributions of the speech and noise power.

The slow response time of IMCRA stems from the strat-
egy used to update the search window for the minimum track-
ing, which must employ a somewhat too long memory of past
input frames. In theory, the problem can be resolved by firstly
detecting the level increment in the background noise power

and then resetting the search window with data from the cur-
rent frame. To this end, we propose a noise increment de-
tector based on monitoring changes in both the high and low
frequency power content of the noisy speech, which is moti-
vated as follows. When speech is present, a detected power
level increment in the noisy speech could be the result of a
sudden increase in the power level of the desired speech. Still,
we notice that the power of a speech signal is mainly local-
ized in a band of frequencies from say 300Hz to 6kHz, while
the noise power tend to spread through all the frequency bins.
Hence, the changes in the power of the observed noisy speech
at lower frequencies (say f ≤ fL = 300Hz) and higher fre-
quencies (f > fH = 6kHz) are most likely caused by an in-
crease in the background noise level, which can be exploited
to avoid false detection. On this basis, we propose to modify
IMCRA as follows.

For the µ-th microphone, let us define the instantaneous
power of the observed noisy speech within the low and high
frequency bands at the i-th frame as follows, respectively:

PLµ (i) =

kL∑
k=0

|Yµ(k, i)|2, PHµ (i) =

L/2−1∑
k=kH

|Yµ(k, i)|2 (10)

where kL = b 300LFs c, kH = d 6000LFs
e and Fs is the sampling

frequency in Hz. Also define the corresponding increments
in power levels over consecutive frames, i.e.: ∆PLµ (i) =

PLµ (i)−PLµ (i−1) and ∆PHµ (i) = PHµ (i)−PHµ (i−1). The
proposed algorithm uses the above differential power mea-
sures in combination with two thresholds, denoted by γL and
γH , to detect a sudden increment in the noise level. Specfi-
cally, a binary indicator variable is first calculated as follows:

Ind(i) =

{
1, ∆PLµ (i) > γH and ∆PHµ (i) > γL
0, otherwise (11)

A change from 0 to 1 in Ind(i) indicates a possible sudden
increase in the background noise level. However, especially
at higher SNR, such a change might be the result of a sudden
increase in the power level of the desired speech. To avoid
this behavior, i.e. false alarm in the detection of a noise level
increment, it is preferable to introduce a timing delay before
making a final decision. Specifically, following a change from
0 to 1 in Ind(i), we require that PHµ (i) remains large for a
sufficient number of frames, say nfr = 6, before deciding
for an increase in the noise level; otherwise the process is
stopped. This second test involves a third threshold, which
we denote as γstop.

Finally, following the detection of a sudden increase in the
noise level, the IMCRA variables related to minimum track-
ing are reset to their initial values (i.e., as used for the first
frame) in all the frequency bins. The complete procedure is
summarized in pseudo-code form in Algorithm 1. In the rest
of this paper, we refer to the auto-PSD estimation algorithm
that results from incorporating this modification into IMCRA
as the modified IMCRA.
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Algorithm 1 Noise Level Increment Detection
Initialize Low old and High old
Initialize Ind = 0
for i = 0, 1, . . . do

∆PL = PLµ (i)− Low old

∆PH = PHµ (i)−High old
if Ind == 0 then

if ∆PH ≥ γH and ∆PL ≥ γL then
Ind = 1

else
High old = PHµ (i)

Low old = PLµ (i)
end if

end if
if Ind = 1 then

if ∆PH ≤ γstop and Count == nfr then
Ind = 0
High old = PHµ (i)

Low old = PLµ (i)
Count = 0
return

else
if Count < nfr then
Count = Count+ 1

else
Initialize IMCRA variables as at the first frame
for all frequency bins

end if
end if

end if
end for

4. CROSS-PSD ESTIMATOR

In this section, we propose a novel scheme based on IMCRA
to estimate the off-diagonal elements of the noise PSD ma-
trix P(k, i) in (5). In this scheme, the noise component in
each microphone signal is first estimated by means of a se-
lected single channel speech enhancement algorithm which
employs the estimated auto-PSD for the corresponding chan-
nel. Using the estimated noise components from different mi-
crophone pairs, the cross-PSDs can then be obtained by re-
cursive smoothing as in IMCRA.

4.1. IMCRA Based Cross-PSD Estimator

We have been able to observe that the presence of speech
components negatively impact the estimation of the noise
cross-PSD when applying an IMCRA type of recursive
smoother. On this basis, we propose to estimate the cross-
PSD Pµ,ν(k, i) in (4) by recursive smoothing of cross-
periodograms derived from the estimated noise components
in the corresponding microphone channels, instead of the

observed noisy speech components.
Specifically, the proposed cross-PSD estimate, for a given

pair of microphones with indices µ 6= ν, is obtained as

P̂µ,ν(k, i) = α̃c(k, i)P̂µ,ν(k, i− 1)

+ (1− α̃c(k, i))N̂µ(k, i)N̂∗
ν (k, i) (12)

where
α̃c(k, i) , αc + (1− αc)p(k, i) (13)

is a time-varying frequency-dependent smoothing parameter
with lower bound 0 < αc < 1, and N̂µ(k, i) is the estimated
noise component for frequency bin k and time frame i of the
µth microphone signal.

The above recursive update is similar in nature to the
IMCRA-based update (6)-(7) employed here to estimate
the auto-PSD. The main difference lies in the use of the
estimated noise components N̂µ(k, i), as opposed to the ob-
served noisy speech components Yµ(k, i), in forming the
cross-periodogram terms. The removal of the speech com-
ponents from the observations makes it possible to reduce
the value of αc, as compared to α in (7), which in turn is
equivalent to the use of a shorter averaging window. Another
difference with (6)-(7) is in the calculation of the smoothing
parameter α̃c(k, i), where we now use the maximum con-
ditional speech presence probability over all the available
microphone channels, that is:

p(k, i) = max
µ
{pµ(k, i)}, (14)

where pµ(k, i) denotes the conditional speech presence prob-
ability computed as in IMCRA and the maximum is over all
microphone channels. This approach tends to give slightly
better estimates of the cross-PSD.

4.2. Noise Estimation

In the proposed algorithm, the estimated noise components
N̂µ(k, i) are obtained by taking advantage of a selected SM
speech enhancement algorithm applied separately to each one
of the microphone signals.

Specifically, for a given microphone channel µ, the esti-
mated noise component N̂µ(k, i) is computed as

N̂µ(k, i) = Yµ(k, i)− Ŝµ(k, i) (15)

where
Ŝµ(k, i) = Gµ(k, i)Yµ(k, i) (16)

denotes the enhanced speech STFT component and Gµ(k, i)
is the corresponding enhancement gain, which can be calcu-
lated by any SM speech enhancement algorithm. In this pa-
per, we use both the MMSE-based gain function from [10]
and the OM-LSA gain function from [11] for this calcula-
tion, and compare the performance of the resulting noise PSD
matrix estimators. In both cases, the proposed auto-PSD esti-
mator P̂µµ(k, i) for microphone channel µ is employed in the
calculation of the corresponding gain.
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Fig. 1. Proposed cross-PSD estimator

5. RESULTS

In this section, we present the results of simulation experi-
ments aimed at evaluating the performance of the proposed
noise PSD matrix estimation algorithms.

5.1. Experimental Setup

We consider MA acquisition of a desired speech signal in the
presence of noise in a rectangular room with dimensions 4×
5×3 (all units in meters). The image method [13] with refine-
ment for non-integer delays is employed to emulate acoustic
propagation between two points in the room. Two different
acoustic environments are employed, that is: without rever-
beration and with moderate level of reverberation where the
walls, ceiling and floor reflection coefficients are set to 0.70,
0.55 and 0.40, respectively. We use M = 2 microphones lo-
cated 0.4 apart (horizontally) at positions [1.8, 2.0, 1.25] and
[2.2, 2.0, 1.25], while the speech and noise sources are located
at [1.9, 1.5, 1.25] and [3, 4, 2], respectively.

Six speech files from 3 male and 3 female speakers are
used in the experiments. Each file is constructed by concate-
nating 10 short sentences from the same speaker without in-
tervening pauses. The speech signals are degraded by various
types of noise with SNR varying from -5 to 15dB in steps
of 5dB. The noise files include a non-stationary white Gaus-
sian noise (WGN) with sudden level increase, air conditioning
(AC) fan noise and hallway noise (see Fig. 2 for additional in-
formation). All the signals are sampled at 16kHz while for the
STFT analysis, we use a 512-point FFT, a hamming window,
and an overlap of 256 samples.

These files are used to evaluate the quality of the newly
proposed noise PSD matrix estimator. For auto-PSD estima-
tion, we compare the performance of the modified IMCRA
proposed in Section III to that of the conventional IMCRA
from [3]. For the complete PSD matrix, with auto and cross-
PSD estimation from Section III and IV, respectively, we con-
sider two different versions of the proposed algorithm:
� Mod-MMSE: Modified IMCRA for auto-PSD with pro-

posed cross-PSD based on MMSE gain from [10]
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Fig. 2. Noise signals used in experiments. From top to bot-
tom: non-stationary WGN, AC fan noise and hallway noise

� Mod-OMLSA: Modified IMCRA for auto-PSD with
proposed cross-PSD based on OM-LSA gain from [11]

These are compared to two selected algorithms from the re-
cent literature, namely:
� Algo-H: Noise PSD matrix estimator from [8];
� Algo-F: VAD-based estimator from [6].

Note that Algo-H requires a priori knowledge of the propaga-
tion vector d(k) between the speaker and the MA. Here, we
use the exact d(k) derived from the room impulse responses,
but in practice, this vector would need to be estimated.

5.2. Performance Measures

Several objective measures are employed to evaluate the per-
formance of the proposed noise PSD matrix estimation algo-
rithm. For the auto-PSD estimator, we use the log spectral
distance (LSD) which is defined for the ith frame as

LSDµ(i) =

√√√√ 1

L

L−1∑
k=0

[
10 log10

Pµ,µ(k, i)

P̂µ,µ(k, i)

]2
(17)

where Pµ,µ(k, i) is the ideal noise auto-PSD (i.e., obtained
from the noise-only file) and P̂µ,µ(k, i) is the estimated one.
For the complete noise PSD matrix estimator, including the
cross-PSD estimator in Section 4.1, we resort to a so-called
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Frobenius spectral distance, defined for the ith frame as

FSD(i) =

√√√√ 1

L

L−1∑
k=0

‖P(k, i)− P̂(k, i)‖2F (18)

where ‖.‖F denotes the Frobenius norm, P(k, i) is the ideal
noise PSD matrix and P̂(k, i) is the estimated one.

To evaluate the overall quality of the proposed noise PSD
matrix estimator, we also consider its effect when used in
combination with a MA speech enhancement algorithm based
on the MVDR beamformer. The weight vector of this beam-
former is given by [4]

w(k) =
P̂(k, i)−1d(k)

dH(k)P̂(k, i)−1d(k)
(19)

where here, the steering vector d(k) can be obtained from
the synthesized room impulse responses. Using this weight
vector, the MVDR beamformer output is computed as

Ŝ(k, i) = wH(k)Y(k, i) (20)

where Y(k, i) = [Y1(k, i), . . . , YM (k, i)]T and Ŝ(k, i) de-
notes the enhanced speech at the beamformer output. Finally,
we compute the PESQ-MOS [14] between the reconstructed
enhanced and clean speech (in the time-domain) as an objec-
tive performance measure.

5.3. Results and Discussion

Experiment 1: In this experiment, we study the effect of a
sudden increase in the background noise level on the perfor-
mance of the proposed noise PSD matrix estimator. The noise
waveform used for this experiment is shown in Fig. 2 (top),
where the noise power is increased by about 6dB at time 16s.
This waveform is added to a selected speech file so that the
overall SNR=0dB (no reverberation).

We first compare the performance of the modified IM-
CRA proposed in Section 3.2 for auto-PSD estimation to that
of the conventional IMCRA [3]. To this end, Fig. 3 shows
the time evolution of the LSD (17) at a selected microphone
for the two algorithms. From the results, it can be seen that
the conventional IMCRA takes around 260 frames to recover
from the abrupt change, whereas the modified IMCRA con-
verges much faster. We generally find that the performance of
the modified IMCRA in tracking the noise auto-PSD is supe-
rior (e.g. in the case of a sudden noise increase), or at least
similar to that of the conventional one.

Next, we evaluate the overall performance of the proposed
noise PSD matrix estimator. Fig. 4 shows the time evolution
of the FSD (18) for the proposed Mod-MMSE and Algo-H
algorithms under the same scenario of a sudden noise change
as in Fig. 3. Again, it can be seen that our proposed algorithm
leads to a better performance, not only in recovering from the
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Fig. 3. LSD comparison between modified and conventional
IMCRA algorithms for auto-PSD estimation
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Fig. 4. FSD comparison between proposed noise PSD matrix
estimation and algorithm from [8]

sudden noise change, but also in maintaining a lower level
of residual FSD during the stationary portions of the noise
background before and after the sudden change.

Experiment 2: In this experiment, we study the perfor-
mance of the proposed noise PSD matrix estimator when
used in combination with the MVDR beamformer (19)-(20).
For each one of the four algorithms listed in Section 5.1, the
PESQ-MOS of the enhanced speech at the beamformer out-
put is calculated and averaged over the six different speakers.
This is repeated for different noise types and SNR values.

Table 1 lists the PESQ-MOS obtained in this way with
the four noise PSD matrix estimators in the absence of rever-
beration. In all cases, the two versions of the proposed al-
gorithm, i.e. Mod-MMSE and Mod-OMLSA, achieve the best
performance. Furthermore, the use of the MMSE gain func-
tion from [10] in the noise estimation (15)-(16) leads to better
enhancement results, suggesting that this method is more ap-
propriate for use in connection with the proposed noise cross-
PSD estimator.

Table 2 lists the PESQ-MOS of the four noise PSD ma-
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Table 1. PESQ-MOS of MVDR Beamformer using Different
Noise PSD Matrix Estimators (no reverberation)

Noise Estimator SNR (dB)
type -5 0 5 10 15

non-stat Mod-MMSE 1.92 2.34 2.50 2.66 2.80
WGN Mod-OMLSA 1.41 1.81 1.99 2.25 2.51

Algo-H 1.43 1.76 2.03 2.22 2.37
Algo-F 0.99 1.17 1.45 1.72 1.87

fan Mod-MMSE 2.27 2.57 2.67 2.89 3.02
noise Mod-OMLSA 1.83 2.07 2.23 2.55 2.77

Algo-H 1.76 2.02 2.20 2.37 2.51
Algo-F 1.19 1.25 1.53 1.80 2.05

hallway Mod-MMSE 2.35 2.67 2.78 3.00 3.08
noise Mod-OMLSA 2.05 2.34 2.50 2.75 2.90

Algo-H 1.87 2.07 2.23 2.37 2.52
Algo-F 1.19 1.36 1.58 1.81 2.00

trix estimators, but this time in the presence of reverbera-
tion. Comparing corresponding entries in Table 1 and 2, we
note that reverberation degrades the speech enhancement per-
formance in all cases, with a noticeable reduction in PESQ-
MOS. Nevertheless, the same conclusions as above can be
made regarding the relative performance of the four algo-
rithms, with the proposed noise PSD matrix estimators Mod-
MMSE and Mod-OMLSA giving the best results by a signifi-
cant margin.

6. CONCLUSIONS

In this paper, we presented a novel method to estimate the
noise PSD matrix for MA systems, which consists of two
parts. For the auto-PSD estimation, we introduced a modifi-
cation to IMCRA where a special level detector is employed
to improve the tracking of non-stationary noise backgrounds.
In comparison to the original IMCRA in [3], the proposed
algorithm converges much faster when the noise level is sud-
denly increased. For the cross-PSD estimation, we proposed
to calculate a smoothed cross-periodogram by using esti-
mated noise components instead of the noisy speech signals
received from the microphones. The noise estimates can be
obtained as residuals after the application of a selected SM
speech enhancement algorithm on the individual microphone
signals. Simulation results showed the effectiveness of our
proposed approach in estimating the noise PSD matrix, and
its robustness against reverberation when applied to a speech
enhancement system based on MVDR beamforming.
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