
D-Algorithm: Decision Tree

Search performed level by level from PO’s to PI’s

startstart
k=1k=1

l =1l =1

i=0,j=1i=0,j=1
i=1,j=0i=1,j=0

g=0,h=0g=0,h=0

a=0,b=1a=0,b=1 a=1,b=0a=1,b=0

c=1,d=1c=1,d=1

g=1,h=1g=1,h=1

c=0,d=0c=0,d=0

““backtrackingbacktracking””

aa
bb

cc
dd

ee
ff

ii

jj

gg

hh

kk

nn

ll

mm

D Algorithm – Line Justification

Find input assignment for value v on line g
Propagating signals through gates

Primitive Cube (PC) of gate – implicant of f or f’
AND NAND OR NOR

Implication
Decision
(choice)

Decisions might be reversed upon conflicts– keep track

fBA

00-

0-0
111

fBA

10-

1-0
011

fBA

11-

1-1
000

fBA

01-

0-1
100

Implication Stack

Push-down stack. Records:
Each signal set in circuit by ATPG
Whether alternate signal value already tried
Portion of binary search tree already searched

Implication Stack after Backtrack

0

1

0 0

0

0

0 11 1

1

E

F

BB

F F

1

Unexplored
Present Assignment
Searched and Infeasible

Objectives and Backtracking of
ATPG Algorithm

Objective – desired signal value goal for ATPG
Guides it away from infeasible/hard solutions

Backtrace – Determines which primary input and value
to set to achieve objective

Use testability measures

D-Algorithm D-Drive
while (untried fault effects on D-frontier)

select next untried D-frontier gate for propagation;
while (untried fault effect fanouts exist)

select next untried fault effect fanout;
generate next untried propagation D-cube;
D-intersect selected cube with test cube;
if (intersection fails or is undefined) continue;
if (all propagation D-cubes tried & failed) break;
if (intersection succeeded)

add propagation D-cube to test cube -- recreate D-frontier;
Find all forward & backward implications of assignment;
save D-frontier, algorithm state, test cube, fanouts, fault;
break;

else if (intersection fails & D and D in test cube) Backtrack ();
else if (intersection fails) break;

if (all fault effects unpropagatable) Backtrack ();

Example: Step 1: A: s-a-0

Step 1 – D-Drive – Set A = 1

D
1 D

Example: Step 2: A: s-a-0

Step 2 – D-Drive – Set f = 0

D
1

0

D
D

Example: Step 3: A: s-a-0

Step 3 – D-Drive – Set k = 1

D
1

0

D
D

1
D

Example: Step 4: A: s-a-0

Step 4 – Consistency – Set g = 1

D
1

0

D
D

1
D

1

Example: Step 5: A: s-a-0

Step 5 – Consistency – f = 0 Already set

D
1

0

D
D

1
D

1

Example: Step 6: A: s-a-0

Step 6 – Consistency – Set c = 0, Set e =
0

D
1

0

D
D

1
D

1

0

0

Example: Step 7: A: s-a-0

Step 7 – Consistency – Set B = 0
D-Chain dies

Test cube: A, B, C, D, e, f, g, h, k, L

D
1

0

X

D
D

1
D

1

0

0
0

D-algorithm - Problem

Note that k and l are complementary signals.
Assume k =1, l =1 is chosen as assignment by D-
algorithm.
D-algorithm determines too late that this is inconsistent.

Solution: Backtrack only on PI values to determine
consistency of signals

aa
bb

cc
dd

ee
ff

ii

jj

gg

hh

kk

nn

ll

mm

Implicit Enumeration: PODEM
Actual space of consistent assignments is only 2n,

where n is the number of primary inputs

Hence, search space can be greatly reduced
(compared to D-algorithm) by enumerating over
primary inputs only

PODEM (Path oriented decision making) is such an
algorithm
Objectives -- bring ATPG closer to propagating D (D) to PO

Backtracing

Motivation

IBM introduced semiconductor DRAM
memory into its mainframes – late 1970’s
Memory had error correction and translation
circuits – improved reliability

D-ALG unable to test these circuits
Search too undirected
Large XOR-gate trees
Must set all external inputs to define output

Needed a better ATPG tool

PODEM High-Level Flow

1. Assign binary value to unassigned PI
2. Determine implications of all PIs
3. Test Generated? If so, done.
4. Test possible with more assigned PIs? If

maybe, go to Step 1
5. Is there untried combination of values on

assigned PIs? If not, exit: untestable fault
6. Set untried combination of values on assigned

PIs using objectives and backtrace. Then, go
to Step 2

Example: PODEM

sa1

Select path s – Y for fault propagation

Step 2

1

sa1

Initial objective: Set r to 1 to sensitize fault

Step 3

1

sa1

Backtrace from r

Step 4
Set A = 0 in implication stack

1

0

sa1

Step 5
Forward implications: d = 0, X = 1

1

sa1

0
0

1

Step 6
Initial objective: set r to 1

1

sa1

0
0

1

Step 7
Backtrace from r again

1

sa1

0
0

1

Step 8
Set B to 1. Implications in stack: A = 0, B = 1

1

sa1

0
0

1

1

Step 9

D

Forward implications: k = 1, m = 0, r = 1, q = 1, Y
= 1, s = D, u = D, v = D, Z = 1

1

sa1

1

0

1
1

D
D

1

0

1
0

1

Step 10
X-PATH-CHECK shows paths s – Y and s –
u – v – Z blocked (D-frontier disappeared)

1

sa1

0
0

1

Step 11
Set B = 0 (alternate assignment)

1

sa1

0

0

Step 12 - Backtrack

1
sa1

0
0

1

0 1

0

1

0
1

0 1

Forward implications: d = 0, X = 1, m = 1, r = 0,
s = 1, q = 0, Y = 1, v = 0, Z = 1. Fault not sensitized.

Step 13
Set A = 1 (alternate assignment)

1

sa1

1

Step 14
Backtrace from r again

1

sa1

1

Step 15
Set B = 0. Implications in stack: A = 1, B = 0

1

sa1

1

0

Step 16 - Backtrack
Forward implications: d = 0, X = 1, m = 1, r = 0. Conflict: fault not
sensitized. Backtrack

sa1

1

0

0

0

1

1

1

1
1

0

0
1

Step 17
Set B = 1 (alternate assignment)

1

sa1

1

1

Step 18 - Fault Detected
Forward implications: d = 1, m = 1, r = 1, q = 0, s =
D, v = D, X = 0, Y = D

1

sa1

1

1
1

1

0

D

0

D

D

X
D

PODEM Decision Tree
startstart

PIPI11=0=0

(All PI(All PI’’s initially s initially unassignedunassigned))

(unused alternative assignment)(unused alternative assignment)

(no remaining alternative)(no remaining alternative)

PIPI11=1=1

PIPI22=0=0

(unused alternative (unused alternative
assignment)assignment)

PIPI22=1=1

PIPI33=0=0PIPI33=1=1

PIPI44=1=1PIPI44=0=0

PIPI55=1=1 PIPI55=0=0

PIPI44=1=1PIPI44=0=0

(conflict: no (conflict: no
test)test)

(conflict: (conflict:
no test)no test)

(no remaining alternative)(no remaining alternative)

(conflict: no (conflict: no
test)test)

(conflict: (conflict:
no test)no test)

indicates no remaining alternative at nodeindicates no remaining alternative at node

PODEM: Algorithm
1. Start with given fault, empty decision tree, all

PI’s set to X
2. 3 types of operations performed

a) check if current PI assignment is consistent. If so,
choose an unassigned PI and set it to 0 or 1

b) If inconsistent and if alternative value of currently
assigned PI has not been tried, try it and mark this PI
as having no remaining alternative

c) If no remaining alternative on this PI, backup to
previous PI assigned, deleting the decision tree below

Algorithm complete: either terminates with a test (all
PI’s assigned) or proves fault is redundant

PODEM: Heuristics

Choosing which PI to assign next
This depends on how the fault could propagate to a
primary output
Choose “closest” PO to which fault can propagate
and determine which PI affects the propagation “the
most”
This is done by computing approximate node
controllabilities and observabilities

Heuristic is quite ad-hoc.
PODEM is ineffective on large networks with a lot

of reconvergence

FAN

Improvements to PODEM:
Backward traversal only up to “head lines”

Lines that cannot cause conflict or input lines
– Fanout stems

Immediate implications – forward, backward
Finds unique (single) sensitization paths
Breadth-first multiple backtrace

Socrates

Provides improvements to PODEM
implications
static and dynamic learning

Basic Idea
When a value is set on a node (due to current partial
PI assignment) what conclusions can be made?

Values on other nodes/PI’s
This allows detection of inconsistencies, thereby causing early

backtracking

Implications

Implications are computed in pre-processing phase and stored
for use during backtracking and assignment phase of
algorithm

aa

cc

bb dd

ee
ff

a = 1 a = 1 ⇒⇒ (d = 1) & (e = 1) (d = 1) & (e = 1) ⇒⇒ f = 1f = 1

Hence, f = 0 Hence, f = 0 ⇒⇒ a = 0a = 0

Static and Dynamic Learning

If a has a D value and it must propagate through g, d must be set
to 1. If it can’t be, then D on a can’t propagate.

This is an implication learned from the topology of the network

a = D ⇒ d = 1
Static learning: implications learned in pre-processing phase
Dynamic learning: implications learned under partial PI
assignments

aa

bb

cc

g g (dominator)(dominator)

dd

Socrates: Algorithm
1. Perform implication of each single lead value and

store information
2. Given a fault, determine implied values by static

learning
3. Use PODEM and determine implied values using

dynamic learning
Heuristic used to determine when to “learn”

1. (e.g. don’t learn implications which are trivial or
already known from previous steps)

Socrates completely subsumed by SAT procedure

Recursive Learning and Graphs

Recursive Socrates-style learning
Improvements to FAN [Kunz,Pradhan92]
Can learn more implications

Not all needed
Time exponential in recursion depth

Memory size linear

Implication graph [Chakradhar et a. 93]
Construct graph of interesting implications by
transitive closure
Efficient for large circuits

Alternatives to ATPG based on
Structural Search

Structural search like ATPG using data structure
for representing circuit under test

First Step: Test patterns assigned at fault location to
generate discrepancy between faulty and fault-free
circuit
Second Step: Search for consistent values for all
involved circuit lines such that faulty results visible at
primary outputs

Alternative solution - algebraic methods used
instead of search on data structures representing
circuit under test

Algebraic methods used to produce single equation
describing all possible tests for particular fault

Algebraic Methods in ATPG

Boolean difference
Boolean difference of function F w.r.t. variable xi:

Set of test for xi s-a-0: Xi*(dF/dxi) and for xi s-a-1: Xi’*(dF/dxi)
Xi - function representing output of subcircuit with output at xi)

Initial formula for Boolean difference is simplified using
basic laws of Boolean difference
In general this approach very time consuming -
alternative Boolean satisfiability more promising

dF

dxi
= F(x1,L, xi−1,0, xi+1,L, xn) ⊕ F(x1,L, xi−1,1, xi+1,L, xn)

Boolean Satisfiability

Boolean formula equivalent to Boolean
difference

Solution based not on symbolic manipulations but
obtained by running Boolean satisfiability

Boolean satisfiability in finding test vectors
Step 1: Extraction of formula defining set of test
patterns detecting given fault
Step 2: Running SAT algorithm to satisfy formula

CIRCUIT Satisfiability

Problem: Given a Boolean network, find a satisfying assignment to the
primary inputs that makes at least primary output have value 1.

Applications:
Test pattern generation

Combinational
Sequential
Delay faults

Timing analysis
Hazard detection

In general, SAT is a good alternative to BDD’s if
only one solution is needed or
a canonical form is not useful

Image computationImage computation
Low powerLow power

The CIRCUIT-SAT problem

Does there exist a value assignment to the
primary inputs which causes at least one primary

output to assume logic value ‘1’ ?

a

b

c

d

e

f

g

h

i

Circuit Representation

Circuits represented in form of directed
acyclic graphs similarly to structural
ATPG

Graph nodes representing: inputs, oututs,
gates, fan-outs
Graph edges standing for: circuit
interconnects

Variable associated with each edge

Directed Acyclic Graphs in
Circuit Representation

Every node assigned formula
representing function
performed by gate or fan-out
point

Formula at every node
containing only variables for its
incoming and outgoing edges
Example: Gate AND (inputs X
and Y, output Z) associated with
formula: Z = X*Y

Boolean SAT
2SAT: finding set of values for xi’s satisfying equation:

ak and bk: literals
Summation and product: Boolean OR and AND operations
Each term in Boolean SAT expression referred to as clause

SAT using conjunctive normal form (CNF), I.e., product-of-sum
Boolean circuit representation
Clause standing for one sum in CFN formula

Clauses with one, two and three elements - unary, binary and ternary
In 2-SAT problem: no ternary clauses

Solvable in polynomial time
3-SAT - ternary clauses present

Solvable in exponential time

akbk = 0∑ (non − tautolog y) (ak + bk) =1∏ (satisfiability)

Generating CNF Formulas

Example: CNF for AND2 gate
Step 1 (I/O relation): Z = X*Y
Step 2 (Implications): Formula P = Q logically
equivalent to (P -> Q)*(Q -> P)

Example (AND2): (Z->(X*Y))*(X*Y)->Z)
Step 3 (CNF): Translation of all implications into
disjunctions using Boolean relation: P -> Q => P’ +
Q

Example (AND2): (Z’+X)*(Z’+Y)*(X’+Y’+Z)
– Formula evaluating to 1 iff values of variables consistent with

AND2 truth table
– Comparison: Disjunctive Normal Form: (X*Y*Z) + (X’*Y*Z’)

+ (X*Y’*Z’) + (X’*Y’*Z’)

SAT Formulations for Circuit
Gates

AND2: If b = 0 then d = 0 (b’->d’ => b+d’ =>(non-taut) b’d
If c = 0 then d = 0 (c’->d’ => c+d’ =>(non-taut) c’d)
If d = 1 then b = 1 and c = 1 (d->bc => d’+bc=>(non-taut) d(bc)’)
If b = 1 and c = 1 then d = 1 (bc->d => (bc)’+d=>(non-taut)bcd’)
Hence: b’d+c’d+(bc)’d+bcd’=0 => b’d+c’d+bcd’=0
SAT: (b+d’)(c+d’)(b’+c’+d) = 1

a
b

c
d

x1
x2
x3 f

OR2:
If a = 1 then b = 1

(a -> b, I.e., a + b’)
If x1 = 1 then b = 1

(x1 -> b, I.e., x1 + b’)
If x1 = 1 or a = 1 then b =1

([x1 + a] -> b, I.e., [x1 + a + b’])
Hence: (a+b’)(x1+b’)(x1+a+b’)

SAT Formulas for Simple Gates

))()((bacbcac ++++))()((bacbcac ++++

))()((bacbcac ++++))((baba ++

SAT Assignments
Assignment of SAT variables through implication graph
Graph structure

Node for each literal
Example: Boolean variable x represented by two nodes x and x’

Nodes true or false
For x=1 node x true, for x=0 node x’ true

Two-variable “if then” clause represented by directed edge from literal
expressing “if” condition to literal for “then” clause

Graph transformed into
If node set true then all reachable nodes also true

Transitive closures determining more global signal relations in graph than
other branch-and-bound search methods

Implication Graph - AND Gate

Only binary implications (with two
literals) represented by edge
“ANDing” node (dotted lines)
representing 3-SAT terms in AND gate
SAT expression

Implication Graph

View 2-clauses as pair of implications
(a + ~b) ⇔ (~a → ~b) ∧ (b → a)
forms implication graph

Strongly-connected components (SCCs) are equivalent
variables (inverters, buffers)

More complex equivalences not detected.
Example: symmetry vs. SCC

aa bb
~a

a

b

~b

(~a+~b+c)(a+~c)(b+~c)(~a+~b+e)(a+~e)(b+~e)(~c+~d)(c+d)

cc ddaa

bb ee
~d

d

c

~c
~a

~b
~e

a

b
e

Non-Local Implications

Explicit derivation of non-local implicants
by examining reconvergent fan-outs
All non-local implications of given
variable listed by binding variable to some
value and then noting direct implication
All non-local implications to be added to
SAT formulas for given circuit

Non-local Implications, cont.

(~a + ~b + x)(a + ~x)(b + ~x)
(~b+ ~c + y)(b + ~y)(c + ~y)
(x + y + ~f)(~x + f)(~y + f)

Example: If b=1 then f=1, if b-0 then f=0 (discovered through
analysis of circuit structure of Boolean description)

1. Find non-local implications for b:
Try asserting (~b)
(b + ~x) ⇒ (~x), and (b + ~y) ⇒ (~y)
(x + y + ~f) ⇒ (~f)
Thus, (~b) ⇒ (~f), so deduce (f) ⇒ (b)

2. If contradiction, (e.g. f ⇒ ~f) fix to other constant (e.g. f=0)
3. Repeat for every formula variable
Crucial for hard faults (esp. redundancies, where no test exists)

bb

cc

aa xx

yy
ff

Example: Formula for Fault Free
Circuits

CNF for each gate and
fan-out independently
satisfied

Formulas for overall
circuit generated starting
from primary outputs and
moving on DAG towards
primary inputs by taking
conjunction of all
formulas of nodes visited
so far

Formula for circuit outputs:
(X+D’)*(X+E’)*(X’+D+E)
(D’+A)(D’+B)(D+A’+B’)
(C+E)(C+E’)

Formula for Faulty Circuit

Faulty version obtained by copying fault free
circuit, renaming variables, and inserting two
nodes representing disrupted connection in
faulty circuit

Fault-free and faulty circuit of the same behavior at
all remaining nodes not affected by fault

Only variables associated with wires lying on paths between
fault and circuit output need to be renamed

CNF for faulty circuit generated the same way
as for fault free

Starting at fault output DAG circuit representation
traversed generating conjunction of all encountered
nodes

Example: Formula for Faulty
Circuit

Formula for faulty circuit with s-a-1 fault at line D:

Testing boils down to finding set of inputs causing
faulty output to differ from fault-free

All possible test guaranteed if CNFs for fault-free and
faulty XORed

CNF for xor of faulted and unfaulted outputs need to be added

(X '+D
f

')∗ (X '+E f)∗ (X f
' + D'+E)∗ (D')∗ (C + E)∗ (C f + E f)

ATPG as CIRCUIT-SAT Problem

a

b
c

d

e

f

g

h

i

1
hf if

t = 1?

Testing by 3-SAT
Automatic Test Pattern Generation (ATPG) [Larrabee,
1992]
Algorithm described so far working well

Several other heuristics added to improve performance
Heuristics based on APTG D-Algorithm allowing speed
up in fault propagation
CNF: conditions for good circuit, fault excitation and
propagation
Clauses :

Good Circuit: All nodes - correct operation
Faulty Circuit: Fault fan-out cone
Active: Fault activation conditions
Goal: Observation conditions

Active Clauses - Definition

Based on observations from D-Algorithm
At least one active path from fault location to primary
outputs for fault to successfully reach output

Discrepancy between faulty and fault free circuit on every
line of active path
Active line - each line member of active path
Note: each active line must have discrepancy, not all lines
with discrepancies belonging marked as active wires

Determining Active Path
Clauses to be added to describe active path

Active variable allocated for each path lying between
fault location and primary outputs
Several clauses allocated for each gate lying between
fault location and primary outputs

Clauses to ensure that:
– If input to single output node active then output also active
– If input to multi-output gate active then one of outputs also

active

Determining Active Path, cont.
Additional clauses guaranteeing all lines on
active path to have different faulted and
unfaulted values

Example: variables ActD and ActX allocated
Following clauses added to set of active clauses:

(ActD + D+ Df),(ActD + D+ Df),(ActX + X + X f),(ActX + X + X f)

Active Clauses

Problem: Good/faulty circuits related only at I/Os, slow to find
contradictions

Solution: active clauses define relationships for internal nodes (Larrabee
1990)
Active variable xa is true if net x differs in good and faulty network.
Here, xg refers to signal x in good circuit and xf to x in the faulty
circuit:

(~xa + xg + xf)(~xa + ~xg + ~xf)
If gate is active, we require that some fanout must be active

xx

yy

zz
(~xa + ya + za)

