

Energy Reduced Software-Based Self-Testing
for Wireless Sensor Network Nodes

Rong Zhang

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

October 2005

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Engineering.

© 2005 Rong Zhang

 i

Abstract

Reliable operation of networks consisting of many embedded wireless nodes operating

under strict cost and energy constraint is a major requirement for their widespread

acceptance. Towards this goal, we consider self-testing of complete wireless nodes in the

field through a low-energy software-based self-test (SBST) method. The energy

consumption of SBST is optimized both for individual components such as a CPU,

embedded memories, and an RF module, as well as at the system level, considering the

interplay between module tests. We derive an SBST scheme that utilizes existing CPU

instructions efficiently by taking the least amount of cycles and selecting operands with

least Hamming distance and weight to minimize the overall energy consumption of the

test code. Time interleaving of module tests at the system level is used to further reduce

the overall test energy consumption. The efficacy of the proposed methods is evaluated

experimentally, using current measurement circuitry integrated in a wireless sensor

network node. Finally, we provide a significant amount of data from wireless network

performance testing that can be efficiently utilized to build statistical models for protocol,

algorithm and hardware design of wireless sensor network.

ii

Résumé

Une opération fiable des réseaux de capteurs sans fil soumis à des conditions strictes de

coût et d'énergie est un des facteurs déterminants pour une utilisation étendue de cette

nouvelle technologie. Suivant cet objectif, nous considérons un autotest complet du

noeud sans fil en utilisant un test intégré à faible consommation énergétique. Les

économies d'énergie sont optimisées pour chaque composante telle l'unité centrale de

traitement, les mémoires intégrées ainsi que le module de transmission radio. Nous

dérivons un système utilisant les instructions de l'unité centrale de traitement de façon

efficace en utilisant le moins de cycles possible. En sélectionnant les opérations afin que

leur distance de Hamming soit minimisée, la consommation d'énergie globale du logiciel

de test intégré est améliorée. Un entrelacement temporel de l'exécution des tests permet

d'économiser encore davantage d'énergie. L'efficacité de la méthode proposée est

évaluée de façon expérimentale en utilisant un circuit mesurant dynamiquement la

consommation de courant d'un noeud de réseau de capteurs sans fil. Finalement, nous

présentons une quantité appréciable de données receuillies à partir de tests de

performance et pouvant être utilisées pour construire un modèle statistique, utile pour la

validation de protocoles et la conception de matériel relié aux réseaux de capteurs.

iii

Acknowledgment

I would like to take this opportunity to show my sincere appreciation to my

supervisors: Dr. Zeljko Zilic and Dr. Katarzyna Radecka. It has been an extremely

rewarding experience for me to do my master research under their seasoned guidance. I

am thankful for their time and effort to instill in me the many sides of research.

I would like to extend my appreciation to my peers in MACS lab. I

thank Jean-Samuel Chenard for his help in design of current measurement board and for

all the fruitful discussions that sparked so many great ideas. I want to thank my

colleagues Milos Prokic, Usman Khalid and Kahn-Li Lim for their help and suggestions

on my master research. I also wish to thank Bojan Mihajlovic for his proofreading of my

thesis.

I am grateful towards the ReSMiQ and towards my supervisors for their financial

assistance during my master’s studies.

During the years of my studies, I have always been enjoying the dedicated support from

my parents. I am grateful for their sacrifice and endurance, which ensure that I can

receive the finest education. I also deeply thank my husband, Bo Xu, for his support and

encouragement throughout my master’s studies.

iv

Contents

1 Introduction 1

 1.1 Motivation………………………………………………………… 1

 1.2 Thesis Outline…………………………………………………...… 5

2 Background 6

 2.1 Microprocessor Testing…………………………………………… 6

 2.1.1 Traditional Structural Testing Methodology……………… 6

 2.1.2 Traditional Functional Testing Methodology……………... 7

 2.1.3 SBST of Microprocessor…………………………………... 9

 2.2 FLASH Memory Testing………………………………………….. 12

 2.3 RF Transceiver Testing……………………………………………. 14

 2.4 Instruction-level Power Optimization Methodologies…………….. 17

 2.4.1 Current Measurement Architecture………………………… 19

 2.5 Wireless Network Performance Characterization…………………. 22

3 Software-Based Self-Testing of WSN Nodes 24

 3.1 Overview of the Node and Test Methodology…………………….. 24

 3.2 SBST of CPU……………………………………………………… 26

 3.2.1 MSP430F149 Microcontroller……………………………. 26

 3.2.2 The proposed SBST Methodology………………………… 29

 3.2.3 Implementation of SBST for Functional Components……. 32

 3.3 March-type Test Algorithm for Embedded FLASH Memory…….. 36

 3.4 Characterization and Testing of RF Module………………………. 37

 3.4.1 CC2420 RF Transceiver…………………………………… 38

 3.4.2 RF Characterization and Specification Testing……………. 39

v

4 Energy Reduction Methods for WSN Node Testing 45

 4.1 Instruction-Level Energy Reduction Methods……………………. 46

 4.1.1 Instruction Selection and Combination…………………… 48

 4.1.2 Operand Selection………………………………………... 50

 4.2 Current Measurement for CPU Testing…………………………… 52

 4.3 Efficiency of SBC Addressing in Memory Testing……………….. 54

 4.4 Time Interleaving of FLASH and other Tests……………………. 55

 4.5 Current Measurement for Time Interleaving………………………. 56

 4.5.1 Time-interleaved FLASH and RAM Testing……………… 57

 4.5.2 Time-interleaved FLASH and RF Testing…………………. 59

 4.6 Energy Considerations for RF Testing………………..…………… 61

 4.7 Summary…………………………………………………………… 63

5 Structuring Measurements for Modeling and the Development of

Industrial Wireless Networks 65

 5.1 Measurement methodology………………………………………. 68

 5.2 Understanding Measurement Results…………….……………….. 71

 5.2.1 Power levels………………………………………….……. 72

 5.2.2 Asymmetry……………………………………………… 73

 5.2.3 Temporal Variability…………………………………….. 74

5.2.4 Interference from other wireless networks. ……………….. 75

 5.2.5 Packet Size…………………………………………………. 76

 5.2.6 Antenna Features………………………………………….. 77

 5.3 Facilitating Deployment and Model Building……………………. 79

5.4 Summary…………………………………………………………… 80

6 Conclusions and Future Work 81

Reference 83

vi

List of Figures

List of Figures

Figure 1: Software-Based Self-Test Concept …………………………………… 3

Figure 2: Self Test Methodology…………………………………………………. 11

Figure 3: Block Diagram of RF Transceiver with BIST……………………….. 16

Figure 4: Current Measurement Architecture………………………………….. 20

Figure 5: Schematics of I to V Conversion Board………………………...……. 21

Figure 6: Photo of NUT Energy Measurement…………………………………. 22

Figure 7: Generic Node Architecture……………………………………………. 25

Figure 8: Test Architecture of Wireless Network Node……………………… 26

Figure 9: Block Diagram of MSP430F149 CPU………………………………….27

Figure 10: Transmitted Power and Receiver Sensitivity Test………………..…40

Figure 11: Test of Adjacent/Alternate Channel Rejection…………………...… 41

Figure 12: Sequence Chart of RF Test Codes…………………………………... 42

vii

Figure 13: Instruction-level Power Consumption……………………………… 47

Figure 14: Current Measurement of CPU Testing before Optimization……… 52

Figure 15: Current Measurement of CPU Testing after Optimization………. 53

Figure 16: Comparison of Binary and SBC FLASH tests…………………….. 54

Figure 17: The Concept of Time Interleaving………………………………….. 56

Figure 18: FLASH and RAM Test Routines before Time Interleaving……… 57

Figure 19: FLASH and RAM Test Routines after Time Interleaving………… 58

Figure 20: Energy and Time Measurement Method…………………………… 59

Figure 21: FLASH and RF Packets Transmission before Time Interleaving… 60

Figure 22: FLASH and RF Packets Transmission after Time Interleaving….. 60

Figure 23: Current Consumption Profile of the Node Testing…...………….. 62

Figure 24: The Real Industry Environment……………………………………. 66

Figure 25: Wireless Network Measurement Architecture……………………...70

Figure 26: Wireless Network Testing Sequence Chart………………………… 71

Figure 27: The Relationship between RR and Distance under Different

Power Levels……………………………………………………….. 73

Figure 28: Dependency of Asymmetric RR to Distance………………….…... 74

Figure 29: The Relationship of Distance and RR at different time……………. 75

Figure 30: The Relationship between RR and Distance over Three Different

 Channels……………………………………………………………… 76

Figure 31: The Relationship between RR and Distance for Different Packet

 Sizes………………………………………………………………….. 77

Figure 32: Dependency of Antenna Polarization to RR and Distance..……… 78

Figure 33: The Relationship between RR and Distance from the Antenna to the

Ground. …………………………………………………….……… 79

viii

List of Tables

Table 1: The Core Instruction Set of MSP430F149 …………………………… 28

Table 2: Word-based Test Vectors for Register Files…………………………. 35

Table 3: Specification Requirement for IEEE 802.15.4….……………………. 40

Table 4: RF Module Characterization…………………………………………. 44

Table 5: Modes for Instruction-level Power Consumption Test……………… 48

Table 6: Energy Consumption of CPU Test Routines…………………………. 53

Table 7: Test Routines (Modes) indicated in Figure 17-21…………………….. 56

Table 8: Energy for FLASH and RAM Test……………………………………. 58

Table 9: Energy Consumption for FLASH and RF Testing…………………… 61

Table 10: Description of Different Wireless Communication Modes…………. 62

Table 11: Wireless Network Testing Features…………………………………. 68

Table 12: Output Power and Current under Different Power Levels………... 72

 Introduction

 1

Chapter 1

Introduction

1.1 Motivation

In recent years, Wireless Sensor Networks (WSNs) have become available for use in

various industrial controls, environment monitoring and military applications. According

to a statistical survey [1], over 53 percent of 200 industrial end-users and systems

integrators are considering deploying a WSN in 2006. By comparison, a similar survey in

January found 45 percent of respondents planning to deploy a WSN in 2005. Interest in

WSNs specifically for industrial monitoring has also increased as 73 percent of

respondents are researching wireless networks for use in these environments, compared

to 64 percent of respondents surveyed in January, the study found. Reliability of wireless

sensor networks were the main reason respondents were delaying deployment, according

to 33 percent of those surveyed. A WSN is a system composed of small, wireless nodes

that cooperate on a common distributed application under strict energy, cost, noise and

maintenance constraints. The ability to build reliable WSNs is essential to their

acceptance in many applications

To achieve sufficient WSN reliability and availability, the periodic in-field test is needed

to pinpoint and repair (or bypass) the failed WSN node that might be physically

unreachable [2]. The environment in which WSNs operate can speed up failure

mechanisms through, for example, cosmic radiation and extreme temperatures. Therefore,

the periodic testing of WSN node should be controlled remotely. A testing session might

result in processing a large volume of vectors that makes the completely remote test

 Introduction

 2

vector generation unrealistic. In addition to bandwidth limitations (most WSNs use low-

bandwidth channels), it is not guaranteed that the sent vectors will reach the destination

node, unless their reception is explicitly confirmed, which is prohibitively energy- and

time-consuming. Therefore, the rational solution is that each WSN node has a build-in

self-test architecture. Then, the communication with a tested WSN node happens only

during the initialization of a test procedure and reporting of the outcome of test sessions.

The on-board self-test capability of a WSN node is essential for the availability of WSN.

In-field test can be performed using a Built-In Self-Test (BIST) infrastructure

incorporated into the wireless nodes. Hardware BIST uses embedded hardware test

generators and test response analyzers to generate and apply test patterns on-chip at the

speed of the circuit under test. BIST moves the testing task from external Automated Test

Equipment (ATE) to internal hardware, thereby eliminating the need for an external tester

and reducing the overall test cost. Hardware BIST [3, 4, 5, 6], however, faces many

challenges. The most widely used logic BIST relies on the generation and application of

pseudorandom test patterns. The fault coverage achieved by pseudorandom testing may

be low for some random-pattern resistant circuits, such as microprocessor. The insertion

of the BIST circuitry used for generating and applying pseudorandom patterns may result

in a significant area and performance overhead. Furthermore, the low cost WSN node is

often built with commercial off-the-shelf (COTS) components that make extra circuitry

insertion is not feasible.

Recently, the use of low-cost Software-Based Self-Test (SBST) methodologies has been

proposed as an effective alternative to hardware BIST, especially for core-based

architecture. An SBST has a non-intrusive nature as it utilizes the existing on-chip

programmable controller and related instruction set for both test pattern generation and

output data evaluation. Therefore, SBST can provide high quality at-speed testing in

normal operational mode without any performance, area and power overhead. Self-testing

approaches for microprocessor have been proposed in the literature [7, 8, 9, 10, 11] and a

review of some of them is given by A. Krstic et al. [12]. An outline of the embedded

SBST concept is shown in Figure 1. Self-test code and data are downloaded into

 Introduction

 3

instruction and data memories from an on-chip memory dedicated for the task of periodic

in-field testing or from a low-speed, low-cost external ATE. Subsequently, these self-test

codes are executed at the processor actual speed (at-speed testing) and test responses are

stored back in the on-chip memory.

CPU core
at speed test application

On-chip Memory
or

Low Cost ATE Self-test data
Test response

Data Memory

Instruction
Memory

Self-test code

Figure 1 : Software-Based Self-Testing Concept

 The published SBST approaches can be classified in two different categories functional

test and structural test. For the SBST techniques which are functional [7], [8], they use

random instruction sequences, operations and operands. Such techniques have low test

development cost due to their high abstraction level, they can also achieve high fault

coverage with execution of a large number of test instruction sequences. Thus, the

derived test program is large and requires excessive test execution time. Also, long fault-

simulation time is required for fault grading. For the SBST techniques which are

structural [9, 10, 11]; they target the components of processor with high structural fault

coverage and regarded as promising techniques for efficient testing of a processor. Firstly,

the structural SBST identify processor components and their corresponding operations.

Secondly, for every Component Under Test (CUT) and for every operation of the CUT,

test patterns are generated targeting structural faults. Thirdly, the test patterns are

transformed to self-test routines (consisting of processor instruction sequences) which are

used to apply test patterns to the inputs of the CUT and collect test responses from the

 Introduction

 4

outputs of the CUT. All self-test routines together constitute a test program with stringent

requirements in code size, data size, and execution time.

WSN nodes are usually battery powered and their replacement and recharge may not

feasible during their lifetime. Therefore, in addition to the test quality, energy

consumption is a major concern in testing WSN nodes. Energy optimization of the

hardware, and even more so for the software is a complex problem that is further

hampered by lack of accurate power models, especially for purchased IP cores and COTS

processors. Furthermore, energy consumption depends on the precise interplay of all

components in the system, including modern wireless protocols that dynamically adjust

the transmission energy. Calculating the energy consumed during a wireless node SBST

based on an accurate energy model is thus beyond our reach. Instead, for SBST

development without a comprehensive energy model, we can rely on measuring the exact

energy consumption profile. For this, we require a complete WSN node outfitted with

accurate current sensing circuitry.

Our SBST considers the complete WSN node, including CPU, memories and an RF

module, as its major components. For the processor core, we design SBST by exploiting

its instruction set functionality and some knowledge of its structure (e.g., major buses).

Instruction-level techniques select addressing modes, operands with minimal Hamming

distance and weight and combine instructions through dynamic programming. The

increasingly essential FLASH memory is tested by a March-type algorithm implemented

in energy-efficient test software. An RF module characterization test is further devised. It

uses our network test architecture to achieve the cooperation of several nodes in finding

accurately whether the module meets the major parts of the RF specifications. The test

time and energy consumption are further reduced by the interleaving of module tests, as a

special case of test scheduling focused around prevalent FLASH test latencies. All the

major design steps are based on the gathered energy profiling information, rather than

simplistic models. The proposed techniques are flexible and cost-effective for a variety of

networked embedded systems.

 Introduction

 5

1.2 Thesis Outline

Following the above introduction, chapter 2 will give a literature review of testing

methodologies for various kernel components of WSN, software energy optimization

techniques and wireless network performance testing.

In Chapter 3, the general WSN node architecture and network test architecture of WSN

node are presented first. The SBST method based on instruction set for CPU core is

presented next. The March FT algorithm is used for word-oriented embedded FLASH

memory testing. We also present the characterization and testing of RF module based on

wireless network communication.

In Chapter 4, a current measurement configuration is proposed to monitor the energy

consumption of the wireless node. Operand’s Hamming distance and weight and

selection and combination of low power instruction are considered for the instruction-

level low energy concern. Time interleaving of various module is a system-level energy

reduction method which further reduces the software energy consumption. The efficiency

of the proposed energy reduction methods is experimentally proved by accurate current

measurements.

Chapter 5 provides a large number of measurements about the relationship between

communication properties that can help to build the statistical models for WSNs. Based

on the current measurement architecture, the energy consumptions of wireless nodes

under different operating modes are also presented.

Finally, Chapter 6 summarizes the contributions in this thesis.

 Background

 6

Chapter 2

Background

In this chapter, we present the related published works for the testing of kernel

components in WSN node: microprocessor, FLASH memory and RF transceiver. After

that, the software energy profiling and optimization techniques are introduced. The

popular communication models that are used to evaluate WSN performance are discussed

at last.

2.1 Microprocessor Testing

We have already briefly mentioned the SBST approaches for microprocessor testing in

chapter 1. In this section, we will discuss evolution of microprocessor testing methods

and talk in detail about the different SBST approaches applied for microprocessor testing.

2.1.1 Traditional Structural Testing Methodology

The definition of structural testing is that a form of testing whereby the goal is to verify

the structure of a chip (the wire connections and the gate truth tables). The opposing form

of testing is functional or behavioral testing. A microprocessor may be considered to be a

structure of interconnected logic gates and storage elements. Structural testing can be the

most difficult to accomplish in a practical manner since much added hardware is usually

required to increase the controllability (the ability to place nets, nodes, gates, or

 Background

 7

sequential elements to a known logic state) and observability (the ability to observe nets,

nodes, gates, or sequential elements after they have been driven to a known logic state) of

internal signals. Most structural testing is designed to augment functional tests. The

generation of structural tests requires access to netlists, the interconnection details of the

design, and fault simulation to evaluate the quality of the test vectors. Consequently,

structural testing is very rarely used on commercially available microprocessors of

100,000 transistors or more unless design for testability has been employed during its

design phases to partition the machine into subunits that can be tested separately. If

structural information is available for test-set generation, the expected fault coverage for

this method can fall in the range of 80-99 percent, depending on the size of the subunits

to be individually tested.

2.1.2 Traditional Functional Testing Methodology

Functional test is defined as a form of testing where a design element is tested by the

application of functional, operational, or behavioral vectors [20]. Functional test should

guarantee that the chip meets system specifications. The development of a functional test

for a microprocessor begins with choosing a system model describing the behavior of the

microprocessor and a fault model describing deviations from correct behavior of the

system model.

In the early 1980’s, Thatte, Abraham and Brahme [13, 14] proposed a graph model (s-

graph) at the Register Transfer Level (RTL) to represent a microprocessor and used

functional level fault models for instruction level test generation. It is considered a

landmark paper in processor functional testing. This approach models the system

behavior of a microprocessor as an “execution” graph that represents memory elements

as nodes. Data flow in the microprocessor is modeled by directed arcs between the nodes

involved in the transfer. A fault model is used to describe incorrect operation of the

“execution” graph. The microprocessor is identified by a set of functions such as i)

register decoding function ii) instruction execution iii) data transfer and data storage

function and iv) data manipulation functions. A functional fault model is then developed

 Background

 8

for each of these functions and tests are generated to detect all the faults in the fault

model. Using the graph method, tests can be generated without detailed knowledge of

how the instruction execution and control function is implemented. Functional testing

methods ignore the internal hardware structure and generate the test sequence based on

the instruction set. Since then, many processor functional testing methodologies have

been proposed [15, 16, 17, 18, 19].

The various functional testing approaches may be classified into the following two

categories: 1. tests based on functional fault models [15, 16, 17, 18]; and 2. tests based on

the “checking experiment” principle, without assuming any faults models [19]. Those

traditional functional test approaches had a high level of abstraction, but required a large

amount of manual effort. Large numbers of tests demand a higher storage capacity of the

ATE and longer test application time. To reduce the number of tests, some fault grading

approach are proposed with grading of faults according to probabilities by which they can

occur in the circuit [18], but very little fault grading was done on structural processor

netlists, while high fault coverage was not guaranteed. The “checking experiment”

method assumes no functional fault models. Instead, it emphasizes the conformity of the

hardware implementation with the architecture level specification. There is a detailed

report of this methodology by C. Bellon et al. [19] with application to design validation,

failure analysis and highly dependable system validation. They conclude that the only

suitable approach to functional testing of microprocessors was an extensive test of the

representative functionality. However, they also concluded that functional test generation

could not provide an alternative to structure-level test generation and manufactures still

had to pay more attention about gate level test generation.

Developing good test programs that can guarantee high fault coverage is not easy, even

for the designer knowledgeable of the internal structure of chip. An exhaustive

microprocessor test set is impossible to implement since an exhaustive test of all possible

combinations of instructions, addressing modes, and data patterns would take years to

complete. Fault coverage is the only standard to check the efficiency of a proposed

testing methodology. Fault coverage is defined as the metric of how many faults are

 Background

 9

exercised and successfully detected (their fault effect is observed) versus the total amount

of fault content in the circuit under test [20]. A precise estimate of the fault coverage can

only be made by running fault simulations with the exact application instruction sequence

as well as with the microprocessor detailed internal structure. In general, for large

microprocessors, fault coverage of 60 to 80 percent is achievable. The length of this

functional test is generally O (nR * nI), where nR is the number of registers, nI is the

number of instructions, and O (*) indicates the order of the quantity enclosed in

parentheses. So, for complex microprocessors with a large number of registers and

instructions, the test set can be lengthy. Furthermore, most of them rely on external ATE

to feed the input test patterns and monitor the test response, in contrast with the SBST

approaches that apply at- speed in a self-test mode.

2.1.3 SBST of Microprocessor

As mentioned before, the SBST approaches applied to microprocessor can be classified

in two different categories. The first category includes the SBST approaches that have a

high level of abstraction [7, 8] and are functional in nature. The second category includes

the SBST approaches that are structural in nature [9, 10, 11] and require structural fault-

driven test development.

A functional test methodology [7] generates a random sequence of instructions that

enumerates all the combinations of the operations and selected operands. Test

development is performed at a high-level of abstraction based on instruction set

architecture. However, since test development is not based on a priority fault models, the

high fault coverage can only be generated by using large test code sequences.

Furthermore, the use of large code sequences results in excessive test application time

and very long fault simulation time for fault grading.

A self-test method [8] combines the execution of microprocessor instructions with a

small amount of on-chip hardware that is used to provide a pseudorandom instruction

sequence, thus creating a randomized test program along with randomized data operands.

 Background

 10

Besides the fact that the proposed methodology cannot be considered as a “pure” SBST

methodology due to the insertion of extra test hardware, the manual effort required for

test program development is high, while the pseudorandom test sequences result in a very

long test application time.

The concept of self-test signatures is introduced and a structural testing methodology for

processor cores is presented by Chen and Dey [9]. There are two stages for the proposed

SBST methodology. At the test preparation stage, pseudorandom patterns are used for

each processor components in an iterative method with the consideration of the

instruction set constraints, based on the knowledge of the gate-level netlist of every

component. At the test execution stage, pseudorandom test patterns developed in the

previous stage and producing self-test signatures are stored in embedded memory. Then,

the pseudorandom test patterns are applied by software test application programs and

responses are collected into memory again. At the test preparation stage, as an alternative,

gate level automatic test pattern generator can be used to generate test patterns for

processor components in the iterative constrained test generation method. The self-testing

step involves the application of the component tests using a software tester, which

consists of an on-chip test pattern generation program, a test pattern application program,

and a test response analysis program, as shown in Figure 2. This methodology is

restricted by the need of gate-level details of the processor structure. Such information

may not be available, but even in the case that it is actually available, the instruction set

test generation for functional modules of the processor is a very time consuming task,

which may not lead to acceptable fault coverage. Besides, the pseudorandom nature of

the methodology leads to large self-test code, large memory requirements and excessive

test application time.

 Background

 11

Figure 2 : Self Test Methodology

A SBST methodology for embedded processor cores [10] that is based on the knowledge

of the instruction set architecture of the processor and its RTL description is proposed.

The RTL description showing the connections among the functional units of the

processor, the storage elements and the steering logic modules is usually available

information and is much more easily managed than a detailed gate-level netlist. Therefore,

a limited engineering effort is required. This methodology is based on the application of

deterministic test patterns targeting structural faults of individual processor components.

The deterministic tests patterns are not automatic test pattern generator generated but are

developed by the methodology in order to excite the entire set of operations that each

component performs. For each component operation, a basic self-test routine is

developed based on a deterministic test set which maps each operation to a processor

instruction sequence. The derived self-test code is compact due to the use of small regular

test sets. The regularity of the basic test sets for the functional module components is

essential since it is the driving force for the small size of the self-test code and thus its

small memory requirements.

The SBST [11] goes a further step by defining different test priorities for processor

components and classifying them according to the defined priorities, proving that high-

level test development based on ISA and RTL description of a complex processor ISA

can lead to low test cost without sacrificing high fault coverage, independently of

complex processor implementation and gate-level structure. The proposed SBST

methodology has the advantages of the functional-based SBST methodologies like test

 Background

 12

development at high level using the ISA, but goes one step deeper, using RTL

information and a divide-and conquer approach targeting individual components with

respect to the stuck-at fault model, thus providing very high fault coverage. The SBST

methodology [11] has the advantage over other SBST methodology [9] that it is an

independent test development strategy with gate-level net list required only for fault

grading purpose. Furthermore, assigning different test priorities to the processor

components and then developing low-cost test routines for the most critical components

of the processor results in smaller on-chip memory requirements, shorter test program

download and test application time while the fault simulation time required for fault

grading is minimized, thus providing an efficient and low-cost alternative structural

approach.

2.2 FLASH Memory Testing

The rapid-growing market of portable electronic devices such as mobile phones and

digital camera has created a large, important demand for FLASH memories. FLASH

memories are a type of non-volatile memory based on floating-gate transistors [25].

There are two kinds of FLASH architecture: NOR and NAND FLASH memory arrays,

whose programming mechanisms are channel hot electron injection and Fowler-

Nordheim tunneling, respectively. They can store charge or remove charge from the

floating gate by electrical means. Their in-field programmability and low power

consumption make FLASH memories widely used in portable devices. New generations

of FLASH memory have higher capacity and lower access time than their predecessors.

Various charge mechanisms, cell structures, and array architectures have been developed

in the past few years [21]. Furthermore, FLASH memories can be embedded in logic

systems to allow software updates. Embedded FLASH memory cores thus play a very

important role in the high performance and complex systems.

There are many challenges for embedded FLASH designs. Reliability has been

considered as the primary test issue for FLASH memories [22]. They are commonly

 Background

 13

tested for disturbance problems, including read-disturb fault, program-disturb fault, and

erase-disturb fault. March test algorithms are widely used for random access memories

(RAMs) testing [23]. March test is a test consisting of a set of March element; each

March element performs a finite number of operations on a cell before proceeding to the

next cell. March tests are the most efficient tests for detecting stuck-at fault (SAF),

transition fault (TF), address decoder fault (AF), and state coupling fault (CFst). However,

March tests are not suitable for FLASH memories due to very different physical

operations. Most FLASH memories can do random read and random program (write 0),

but cannot do random erase (write 1). Instead, they support block erase or chip erase. The

erase cycle can be initiated from within FLASH memory. When FLASH erase option is

initiated, CPU is held while the erase cycle completes. Therefore, March tests for RAMs

are in general not applicable to FLASH memories. Recently, systematic approaches for

testing FLASH memories [24, 25] were proposed, in which fault models capture the

characteristics of disturbances in the memory structure and test algorithms are used to

detect these faults. Furthermore, the FLASH algorithms [24, 25] are March-like, which

facilitate the coverage analysis and the test pattern generation. The IEEE 1005 Standard

Definitions and Characterization of Floating Gate Semiconductor Arrays [26] is used to

derive realistic fault models for FLASH memory, and then used to develop March-like

test algorithms for those fault models. The possible disturb mechanisms for NOR-type

stacked gate FLASH memories include gate program disturbance (GPD), gate erase

disturbance (GED), drain program disturbance (DPD), drain erase disturbance (DED),

and read disturbance (RD). A GPD fault occurs when a cell under program (selected cell)

causes another unprogrammed cell (affected cell) on the same word line to be

programmed. A GED fault occurs when a cell (selected cell) under program causes

another programmed cell (affected cell) on the same word line to be erased. The DED

fault occurs when a cell (selected cell) under program causes another programmed cell

(affected cell) on the same bit line to be erased. A DPD fault occurs when a cell (selected

cell) under program causes another unprogrammed cell (affected cell) on the same bit-

line to be programmed. An RD fault occurs on the selected cell. Because the bias

conditions for reading are the same as for programming, hot electrons can be injected

from the channel into the FG even if it is at a low gate voltage. Several functional fault

 Background

 14

models commonly used for testing RAMs are also considered useful for testing non-

volatile memories [23], including SAF, TF, stuck-open fault, address decoder fault, and

CFst.

Recently, there have been some efforts to test FLASH memory fault models. The March

EF [24] detects FLASH disturbances with low test complexity. Moreover, a March FT

algorithm for FLASH memory [25] goes further than March EF. March FT can be

presented as follows:

(f); �(r1, w0, r0); (r0); (f); �(r1, w0, r0); (r0)

� (�) - an increasing (decreasing) address order e.g. from address 0 to address n-1 (or

vice versa),

 - address order is irrelevant,

W0/1 - writing a 0/1 into a cell,

R0/1 - reading a cell with expected value 0/1,

f - block erase of the FLASH.

Compared to March EF, March FT adds two additional read operations at the second and

fifth March elements. With two additional read operations, the coverage of stuck-open

fault and state coupling fault all reaches 100% from 50% and 75% when tested

individually. March FT algorithm has the advantages that they are more regular, easier to

generate and cover more functional faults. Compared to the March EF algorithm [24] in

which the topology information is necessary to explicitly perform row and column

operations, March FT does not rely on the array geometry, which make it more general

and applicable to FLASH memory. Most memories in the modern applications are word-

oriented memories. To cover intra-word coupling fault and intra-word gate program

disturbance, 1 and 0 presented in the March FT algorithm should be replaced by {1111,

1100, 1010} and {0000, 0011, 0101} for a 4-bit word-oriented FLASH memory, for

example.

2.3 RF Transceiver Testing

 Background

 15

Nowadays the RF devices are widely used in wireless electronic products. A high enough

quality of the RF part is essential to achieve the intended performance of the Wireless

product. The problem of verifying correctness of the RF circuitry is important, and to

perform test expensive RF equipment (ATE) still has to be employed. On the other hand,

the advancing complexity and performance of present RF transceivers are pushing the

ATE to the edge of its limits. In this context an alternative approach based on the BIST is

appealing and can alleviate the problem.

Some loopback test schemes are proposed to test RF transceiver to avoid the use of ATE

[27, 28, 29, 30, 31]. In the loopback test configuration, the transmitter output is looped

back to the receiver and the test response is captured in the baseband at the output of the

receiver. The advantage of this loopback scheme is that the receiver and transmitter

subsystem specification values are decoupled and calculated at the receiver baseband

(commonly, a DSP is used to analyze the test response). An additional receiver path is

used in order to increase observabiltiy [27, 28]. In [27], the authors propose in a

conceptual manner to use a dedicated down-conversion path on the same chip for down-

converting the transmitter output back to baseband; at the same time, by the means of an

RF coupler, it proposes to feed the transmitter output back into the receiver input.

However, the concept presented has not been supported by experimental data. In [28], a

pseudo-random test stimulus is proposed to measure the adjacent channel power rejection

specification of the transceiver system. The response of the subsystem to this stimulus

has a large number of frequency bins in the up-converted RF frequency spectrum.

Therefore, measuring the power over such large number of tones requires long test times

and expensive RF ATE. In [29], an additional single bit DA converter is used to test the

receiver path. In [30], an optimized periodic bitstream generated by the DSP and

modulated by the transmit modulator at the baseband is used as the test stimulus. The

output of the transmit subsystem to this stimulus is fed back into the receiver subsystem

using minimal on-board hardware. The test response at the output of the receiver

subsystem is processed by the DSP and the linear and the nonlinear specifications of the

transmit and the receive subsystems are computed.

 Background

 16

An enhanced BIST approach is proposed to deal with the spot defects that can severely

degrade the performance or result in chip malfunction [31]. The spot defects are layout-

dependent and result in electrical opens and shorts or can produce resistive breaks or

bridges. The fault models follow those abstraction levels: layout, circuit and functional

block. A block diagram of the proposed RF transceiver is shown in Figure 3. All the

functional blocks with the exception of the Power Amplifier (PA), RF filter, diplexer and

antenna are integrated on one chip. To enable BIST the test amplifier (TA) has been

added to the chip. The proposed BIST would be arranged in a loop-back configuration,

where the base-band processor serves both as a stimulus generator and response analyzer.

The test loop comprising of the transmitter (Tx) and receiver (Rx) path is closed by the

test amplifier. A possible local test loop aimed at the DA/AD converters is marked with a

dashed arrow (filters could be included in the test).

Figure 3 : Block Diagram of RF Transceiver with BIST

They verified that the existence of spot defects at the layout level and resistive break or

bridges at the circuit level can be mapped into the impairments in RF specifications of the

functional blocks such as gain, noise figure or IP3. Increased noise figure should display

low signal-to-noise ratio (SNR) as test response. There is a relation between spot defects

in the transmitter and the SNR of the response. The relation drives them to choose a test

with a response sensitive to noise figure and SNR. Hence, the proposed BIST [31] uses

 Background

 17

the PRBS as the baseband stimulus, and the primary test response would be the bit-error

rate measured in the baseband.

The loop-back BIST architectures applied to RF front-ends have the advantages that the

high performance and expensive ATE is avoided by the use of BIST. However, some

extra circuitry must be added to provide the loopback path. Some faults happened in the

circuit under test may be masked by the added circuits. The probability of a fault is

roughly proportional to the chip area, and the probability that the fault is located in the

test circuitry is proportional to the ratio of the respective areas occupied on a chip [31].

The added test circuitry will increase probability of the faults happening. Furthermore, it

is not feasible to access the internal nodes of COTS RF transceiver and add extra circuit

for loopback. In this thesis, we will propose an SBST methodology for RF testing with

the aid of wireless communication among WSN nodes. The SBST methodology avoids

the adding of extra circuitry. It is a flexible test scheme without area and performance

loss.

2.4 Instruction-level Power Optimization Methodologies

The increasing popularity of low power mobile product drives the need for analyzing and

optimizing power consumption in all parts of a system. In the last decade, researchers

have devoted increasing efforts to reduce the average power consumption in VLSI

systems during normal operation mode, while power consumption during test operation

mode was usually neglected. However, during test application, the circuits are subject to

an activity level higher than normal: the extra power consumption due to the test

application may thus give rise to severe problems in the circuit reliability. Moreover, it

can dramatically shorten the battery life when periodic testing of battery-powered

systems is considered. Nowadays, energy consumption of software has emerged as an

important metric of a system. Especially for embedded systems, there is a high demand

for optimization techniques that enable energy reduction for software, since an increasing

number of applications are powered by batteries. In order to systematically analyze and

assess this impact, it is important to start at the most practical and fundamental level - the

 Background

 18

instruction level. Accurate energy profiling and analysis at this level is essential to

evaluate the software in terms of energy consumption, and also to help software

developers in their search for low power software implementations [32, 33, 34].

The average power consumed by a system is given by: P = I * Vdd, where P is the

average power, I is the average current and Vdd is the supply voltage. The energy, E,

consumed by a program is further given by: E = P * N * �, where P is the average power,

N is the number of clock cycles taken by the program and � is the clock period. Thus, the

ability of testing the current drawn by the CPU during execution of the program is

essential for measuring its power/energy cost. Loops of hundreds of the same instruction

or instruction sequences are performed on the processor, and the average drawn current is

used to get the energy consumption of the instructions.

Due to the lack of accurate power models, measurement-based approaches are widely

used for software energy analysis. The energy consumption of software is characterized

by examining the data obtained from real hardware. The advantage of the measurement-

based approaches is that the resulting energy model is close to the actual energy

consumption behavior of the processor, because the data is acquired from the hardware

itself. The majority of work published on the field of measurement-based techniques

refers to the Tiwari method [32] as a base point. In this approach, the software energy

requirements consist of the unique base cost for each instruction and the inter-instruction

effects. The base cost for an instruction is defined as the average current drawn by this

instruction when executed repeatedly in a tight loop, multiplied by the number of cycles

taken by each instance of the instruction. On the other hand, the inter-instruction effect is

defined as the additional power cost incurred by executing different instructions

sequentially. The Tiwari technique is used at other applications [35, 36]. These

techniques provide a simple framework for software energy estimation by summarizing

the energy consumption by instructions in the form of a table. However, by relying on the

average current, they largely ignore the detailed impacts of various factors that affect the

energy consumption at the instruction level. Moreover, these techniques do not provide

 Background

 19

the information about the energy variation due to various aspects of instructions such as

the instruction fetch address and what the operand specifies.

In contrast to the average current measurement, instantaneous current is firstly measured

by Russel et al. [37], where a digital oscilloscope is used for reading the voltage

difference over a precision resistor that is inserted between the power supply and the core

supply pin of the processor. Instantaneous power is then calculated directly from the

voltage waveform from which average figures are extracted to guide instruction power

modeling. Resistor-based methodologies suffer from supply voltage fluctuations over the

processor which reduces the accuracy of the method. A technique to derive more fine-

grained energy consumption is proposed by Chang et al. [38], where they measure the

cycle-level energy consumption using specific measurement hardware. They also analyze

the impact of various properties of instructions on the energy consumption, based on this

measurement method. Using this approach, it is shown that the energy consumption of

software is dependent on the properties of instructions, such as register numbers,

immediate operands, Hamming distance of test vector, etc.

2.4.1 Current Measurement Architecture

Conventional processor boards are composed of memory and many other peripherals.

The best way to remove systems dependent bias during measurement is to use a processor

board solely composed of a microprocessor core. This is almost impossible in real

systems, but we can set up an environment for testing with the above conditions.

To investigate the real power consumption of our wireless node, a current measurement

scheme is built, as shown in Figure 4[1]. It measures the instantaneous current drawn by

the processor during execution of the test program. The voltage drop measured across a

small resistor is amplified by the Burr-Brown INA145 programmable-gain amplifier, and

the output voltage is recorded by the Agilent 54830D oscilloscope, capable of

synchronizing recording with digital signals D0-3, as with logic analyzers. These signals

help identify different modes in test routines. We display these modes on the bottom of

 Background

 20

oscilloscope screen captures. A digital oscilloscope is used for reading the voltage

difference over a unit resistor that is inserted between the power supply and the core

supply pins of the processor. The energy consumed by test routines is calculated by

integrating the product of instantaneous currents with power supply voltage Vdd at the

node. The current integration is performed by Agilent 54830D. The detailed schematics

of the PCB board for I to V conversion is shown in Figure 5[1].

I to V conversion with
amplifying gain

±5V to 3.3V conversion

Node under Test

Agilent
54830D

 Mixed Signal
Oscilloscope

Power supply

v

D0-3

+5V -5V

I3.3 V

Figure 4 : Current Measurement Architecture

The +5V and -5V power supply is provided by the HP E3630A triple output DC power

supply. The ±5V are used as power input for amplifier INA145 and 5V-3.3V regulator in

I to V conversion board. The NUT board only contains the sole MSP430F149

microcontroller, external 32 KHz and 8 MHz oscillators, some resisters and capacitors.

Port 5 (P5.0-P5.3) of MSP430F149 is used to indicate various test modes. The current to

the NUT is amplified by I to V conversion with amplifying gain and is measured by

Agilent 54830D 2+16 channel, 600MHz mixed-signal oscilloscope.

Figure 5 shows the schematics of I to V conversion board. The current input to the NUT

board goes through a unit resistor R3 (1 �) and is equal to the voltage drop of the R3.

Since the current cost by MSP430F149 is a few tens of mA that is too small to be

measured by scope, the voltage of R3 (equal to the current to NUT since R3 is 1 �

 Background

 21

resistor) must to be amplified with proper gain in order to be readable by scope. A

programmable gain difference amplifier IN145 is used to amplify the voltage of R3.

INA145
Programmable Gain
Difference Amplifier

R3
1�

31 42

78 6 5

3

2

1

5V-3.3V
Regulator

7805

+5V

0.1u

R2
100k

0.1u

R1
1k

0.1u

-5V

Vout = (1+ R2/R1) * I * R3=101 * I

NUT
I

To Scope Vout

Figure 5 : Schematics of I to V Conversion Board

The INA145 is a precision, unity-gain difference amplifier consisting of a precision op

amp and on-chip precision resistor network [47]. Two external resistors (R1 and R2) set

the gain from 1V/V to 1000V/V. The input common-mode voltage range extends beyond

the positive and negative rails (single supply: 4.5V to 36V, dual supply: ±2.25V to ±18V).

Here, according to estimated current cost of NUT, we set the gain as 100 calculated by

the equation of Figure 5. A ±5V power supply is provided to INA145 by the external

triple output DC power supply. The proper value of Vout is measured by the Agilent

54830D. The 5V-3.3V regulator 7805 is used to provide 3.3V power to the sole chip

MSP430F149 on NUT.

Figure 6 shows the photo of our real energy measurement architecture for NUT.

 Background

 22

Figure 6 : Photo of NUT Energy Measurement

2.5 Wireless Network Performance Characterization

The performance of many protocols and algorithms for wireless network greatly depend

on the underlying communication channel. An accurate communication model plays a

key role in simulating and evaluating the network performance. Until now, there were

two approaches that had been widely used in the sensor network community. They are

unit disk modelling and empirical data traces. However, the unit disk models imply

complete correlations between the geometric space and the topology of the network,

which was proved to be wrong by many experiments [39, 40, 41]. The empirical data

trace approach is difficult and costly when used to characterize large networks.

Recently, there have been a lot of efforts to empirically capture communication patterns

in wireless sensor network. Low-power COTS radio transceivers chips are used to deduce

 Background

 23

properties of communication links in wireless networks in several environments, such as

open space and laboratories. These hybrid models introduce empirically observed factors

that modify the communication patterns based on the unit disk communication model. A

non-parametric statistical technique is proposed in [42] which develop an accurate

simulation of network communication environments that are statistically accurate with

respect to several features that impact network protocols and algorithms in real networks.

To generate these simulated environments, they construct a set of models that map

communication properties such as absolute physical location, relative physical proximity

and radio transmission power into probability density functions describing packet

reception likelihood. For all of these models, an interval of confidence is calculated. The

models can help identify future directions for developers of protocols, localized

algorithms and power management strategy for wireless sensor networks.

[1] The Current Measurement Architecture and I to V conversion board are built by Jean-

Samuel Chenard.

 Software-Based Self-Testing of WSN Nodes

 24

Chapter 3

Software-Based Self-Testing of WSN Nodes

Commonly, a wireless node includes a processing part and a communication part. The

processing part is used to control the functionality of the node and to process and store

the data. In this case, a microprocessor with embedded memory is used as the processing

part. The communication part (an RF module in this case) is used to communicate

amongst the nodes of the wireless network. For in-field testing, we are restricted to the at-

speed BIST approaches because Automatic Test Equipment (ATE) use is impractical.

Since wireless nodes are currently mostly made of IP cores and COTS parts, the

possibility of adding self-test hardware is limited, and is certain to cause additional cost

in hardware and energy consumption. Hence, SBST is the preferred choice. In this

chapter, SBST methodologies are used to test kernel parts of wireless nodes. First, the

generic architecture of a wireless node will be given. Second, a component-based SBST

approach is used for CPU core testing whose aim is to find structural faults (stuck-at

faults). Third, a March-type algorithm, which is implemented by a microcontroller, is

used to test the embedded FLASH memory. Finally, an RF module is characterized

according to the common protocol for WSNs and tested with the aid of wireless

communication (Packets Error Rate –PER testing).

3.1 Overview of the Node and Test Methodology

A generic wireless node has at minimum an embedded microcontroller and an RF module,

as seen in Figure 6. A microcontroller with its embedded memory, including a significant

 Software-Based Self-Testing of WSN Nodes

 25

amount of FLASH, is used to control the overall node operation and process/store data. It

can also be used to implement node self-testing and to interpret and/or communicate test

results. An RF module combines the effects of an RF transceiver, balun circuitry and an

antenna for seamless wireless transmission within a given specification. Modern RF

modules support several low-power modes and provide some encryption and Media

Access Control (MAC) protocol support.

RF module

Figure 7 : Generic Node Architecture

High system availability requires quick fault detection and its repair; hence to avoid

network latency, nodes should test themselves [2], as a part of the broader in-field

network test architecture. In such a scheme, a dedicated Task Manager Node (TMN)

remotely activates and then coordinates a self-testing session of a Node Under Test (NUT)

as shown in Figure 8. The node SBST scenario begins with CPU core self- testing,

followed by a comprehensive test program for the rest of the system. Testing of the RF

module and the wireless link characterization amongst different nodes are also performed

under control of the previously tested CPUs.

 Software-Based Self-Testing of WSN Nodes

 26

node

NUT
Computer

node

node

TMN

Task Manager Node

node

node

node

node

node

node
node

Wireless field

Wireless
node

Node Under
Test

node

node

node
node

node
node

node

node

node

Figure 8 : Test Architecture of a Wireless Network Node

3.2 SBST of CPU

Our WSN node is equipped with a low-power COTS microcontroller, the MSP430F149.

The information about the chip is all from the user manual. The gate level structure of the

microcontroller is not available to us because manufacturers restrict access to the internal

structure of such devices, claiming proprietary rights to this information. Based on the

above constraints, a structural SBST methodology [11] is used to test the CPU. The

SBST methodology is based on the application of deterministic tests targeting structural

faults of individual controller components. The high coverage (>95%) SBST from [11]

explores a divide-and-conquer approach targeting individual components for stuck-at

faults and defines different test priorities for controller components. It combines the

desirable characteristics of functional testing (like test development at high level using

the processor instruction set) with a good use of the RTL information.

3.2.1 MSP430F149 Microcontroller

The MSP430F149 is a 16-bit low-power mixed-signal microcontroller provided by Texas

Instruments (TI). It has the following features [43]:

 Software-Based Self-Testing of WSN Nodes

 27

♦ A powerful 16-bit RISC CPU core

♦ Ultra-low power consumption: 280uA in active mode, 1.6uA in standby mode and

0.1uA in off mode.

♦ Five power-saving modes

♦ The complete MSP430F149 instruction set consists of 27 core instructions.

♦ 256KB of Embedded FLASH memory and 2KB of RAM

♦ Two Serial Communication Interfaces (USART), functioning as asynchronous

UART or Synchronous SPI interfaces.

♦ A Watchdog Timer Controller and a 16-bit timer/counter.

Figure 9 : Block Diagram of MSP430F149 CPU

A block diagram for the CPU core is given in Figure 9 and V, N, Z, C are explained as

follows:

 Software-Based Self-Testing of WSN Nodes

 28

��V: Overflow bit. This bit is set when the result of an arithmetic operation

overflows the signed-variable range.

��N: Negative bit. This bit is set when the result of a byte or word operation is

negative and cleared when the result is not negative.

��Z: Zero bit. This bit is set when the result of a byte or word operation is 0 and

cleared when the result is not 0.

��C: Carry bit. This bit is set when the result of a byte or word operation produced

a carry and cleared when no carry occurred.

The complete MSP430 instruction set consists of 27 core instructions and 24 emulated

instructions. The core instructions are those that have unique op-codes decoded by the

CPU. The emulated instructions are instructions that make the code easier to write and

read, but do not have op-codes themselves; instead they are replaced automatically by the

assembler with an equivalent core instruction. There is no code or performance penalty

for using emulated instruction. There are three core-instruction formats: Dual-operand;

Single-operand and Jump. The core instruction set is shown in Table 1. Here S means the

working register used for source operand and D means the working register for

destination operand.

Table 1 : The Core Instruction Set of the MSP430F149

Instruction
format

Mnemonic Operation Status Bits
V N Z C

MOV Move S to D - - - -
ADD Add S to D * * * *
ADDC Add S and C to D * * * *
SUB Subtract S from D * * * *
SUBC Subtract S not C form D * * * *
CMP Compare S and D * * * *
DADD Add S + C decimally to D * * * *
BIT Test bit in D 0 * * *
BIC Clear bit in D - - - -
BIS Set bit in D - - - -
XOR Logic XOR * * * *

Dual

operand
instruction

AND Logic And 0 * * *
RRA Rotate left arithmetically 0 * * * Single

operand RRC Rotate left through C * * * *

 Software-Based Self-Testing of WSN Nodes

 29

PUSH Push S onto stack - - - -
SWPB Swap bytes - - - -
CALL Call D - - - -
RETI Return from interrupt * * * *

instruction

SXT Extend sign 0 * * *
JEQ/JZ Jump to label if Z is set
JNE/JNX Jump to label if Z is reset
JC Jump to label if C is set
JNC Jump to label if C is reset
JN Jump to label if N is set
JGE Jump to label if N xor V=0
JL Jump to label if N xor V=1

Jump
instruction

JMP Jump unconditionally
* The status bit is affected
– The status bit is not affected
0 The status bit is cleared
1 The status bit is set

3.2.2 The Proposed SBST Methodology

Considering the SBST methodology in [11] and the MSP430 CPU core architecture

illustrated in Figure 9, our SBST approach is implemented in three steps:

Step 1: Information Extraction.

Identification of processor components and component operations, as well as instructions

that excite component operations and instructions (or instruction sequences) for

controlling or observing processor registers is essential. The processing of information

extraction is summarized as follows:

1. Find the set of all the processor components C.

2. Find the set OC of all the operations of each component C, along with the

corresponding control signals that the processor control unit drives to C for the execution

of the operation.

3. Find the set of instructions IC;O that, during their execution, excite the same control

signals and drive component C to perform the same operation O.

 Software-Based Self-Testing of WSN Nodes

 30

4. Find the appropriate instructions or instruction sequences that set the value of

processor registers.

5. Find the appropriate instructions or instruction sequences that make the value of

processor registers observable at primary outputs.

From Figure 9, there are four functional components in the CPU core: ALU, register files,

data/address bus and ALU output status bus (NVZC).

OALU = {add, subtract, add with carry bit, subtract with carry bit, compare, add with carry

bit and the result is decimal, and, or, xor}

IALU; O = {ADD, ADDC, SUB, SUBC, CMP, DADD, BIT, BIC, BIS, XOR, AND}

OALUstatus = {four status bit N, V, Z, C are set to be 1/0}

IALUstatus; O = {JEQ/JZ, JNE/JNZ, JC, JNC, JN, JGE, JL}

The fault models for data/address bus and register files are SAF and the execution of all

instructions will affect the values of the bus and register files. The appropriate

instructions to set values of registers and make the values of registers observable will be

given in detail in Step 3.

Step 2: Component classification and test priority.

Using the information extracted in Step 1, the components that appear in a processor core

RTL description are classified in the following three classes:

��Functional components. The processor components that are directly related to the

execution of instructions (data processing/data storage) and are in some sense visible

to the assembly language programmer. These components include:

1. Computational components, which perform specific arithmetic/logic operations on

data, e.g. ALU.

2. Interconnect components between processor components, which serve the data flow

in a processor datapath.

3. Storage components, which serve as data storage elements that feed the data to the

inputs of the computational components and capture their output. Components

classified in this subcategory include special processor registers visible to the

 Software-Based Self-Testing of WSN Nodes

 31

assembly language programmer and the register file.

��Control components. The components that control either the flow of instructions/data

inside the processor core or from/to the external environment (memory, peripherals).

These components include the processor control unit, the instruction and data

memory controllers that implement instruction fetching and memory handshaking,

and similar components.

��Hidden components. The components that are added in the processor architecture

usually to increase its performance, but they are not visible to the assembly language

programmer.

Three classes of components have different test priorities. Test priority determines the

order in which test routines will be developed for each component. High priority

components will be considered first, while low priority components will be considered

afterward and only if the achieved overall fault coverage result is not adequate.

From Step 1, the four components in the CPU core are all functional components. The

ALU is a computational component; the data/address buses and the ALU status bus are

interconnect components, and the register file is a storage component. The RTL of

control components and hidden components is not available from the user manual. Our

tests only focus on the testing of functional components.

Step 3: Test routine development

Development of self-test routines emphasizes using compact loops of instructions by

considering the optimized software energy consumption (for details refer to Chapter 4).

The method provides very high fault coverage for most types of architectures of the

processor components. There are two steps to test routine development:

��Instruction Selection. For every component operation OC derived from Step 1, we

select an instruction I from the set IC;O that is the shortest instruction sequence

required to apply the specific operand to component inputs and propagate the

component outputs to the primary outputs.

 Software-Based Self-Testing of WSN Nodes

 32

��Operand Selection. Application of deterministic operands is considered to each

component in order to achieve high structural fault coverage and low software

energy consumption.

3.2.3 Implementation of SBST for Functional Components

Four test routines are developed for testing the ALU, the ALU status bus, the register

files and the address/data bus. We describe them individually as follows:

ALU testing

All ALU instructions are executed to test ALU functionality. We take the code section to

test ADD and ADDC as an example to illustrate its operation.

--

 ………..

// test with ADD and ADDC instruction//

 mov #0x0001,r7 (set register 7 with the value of 0x0001)

 mov #0xf000,r6 (set register 6 with the value of 0xf000)

 mov #0x0001, r8 (set register 8 with the value of 0x0001)

 mov #0xff00, r9 (set register 9 with the value of 0xff00)

 add r9, r6 (add the value in r9 with r6, the carry bit should be 1 now)

 addc r7, r8 (add the value in r7, r8 with carry bit)

 cmp #0x0003, r8 (compare the result in r8 with 0x0003)

 jnz Error (if the result is not equal, jump to line named Error,

otherwise execute next line)

 ..………

 …….....

 jmp End (if no error happened, jump to the end of the routine)

 Error mov #0x2222, r15 (if there is an error, set specified value to r15 which

 is the return value of the subroutine. It will notify

 the main routine there is error in ALU testing)

 End (the end of test routine, return to main routine)

 Software-Based Self-Testing of WSN Nodes

 33

--

ALU status bus testing

There are four lines (ZCVN) in the ALU status bus; the four bits are used as conditions in

jump instructions. All jump instructions are given in Step 1. By instruction and operand

selection, the four lines are set to be 1 or 0 individually and the results are proved by the

execution of jump instructions with different ZCVN values. A section of test code for JZ

and JNZ is shown as follows:

--

// testing the zero bit with JZ and JNZ instructions//

 mov #0xaaaa, r6

 mov #0x5555, r7

 bit r7,r6 (the value in r7 and the value in r6, the zero bit should be 0)

 jz Node1 (if the result is equal to 0, jump to line named Node 1)

jnz Error (if the result is not equal to 0, jump to line named Error. If

error happened, report the error and the rest will not be

tested.)

Node1 mov #0x5555, r6

 mov #0xffff, r7

 bit r7,r6 (the value in r7 and the value in r6, the zero bit should be 1)

 jnz Node2 (if the result is not equal to 0, jump to line named Node 2)

 jz Error (if the result is equal to 0, jump to line named Error)

…………

Register file testing

There are sixteen 16-bit registers in MSP430F149. Since the register file has a very

regular structure in the form of identical cells, the traditional memory testing

methodology can be used for register file testing. We use one test of the March family

 Software-Based Self-Testing of WSN Nodes

 34

called “March X” to test the register files. The fault coverage of March X includes SAFs,

TFs, CFs and AFs. The scheme of March X is as follows:

.
{ (W0); �(R0, W1); �(R1, W0); (R0)}

M0 M1 M2 M3

�(R0, W1) and �(R1, W0) guarantees that the AFs can be detected. SAFs are detected

since each byte is read with expected value 0 (by M1 and M3) and with expected value 1

(by M2). All <↑/0> TFs are detected since each segment is read after a ↑ transition (W1 in

M1 then follows R1 in M2). All <↓/1> TFs are detected since each segment is read after a

↓ transition (W0 in M2 then follows R0 in M3). CFs can be totally covered by the March

X algorithm; the detailed proof can be found in [23].

The March X algorithm requires a total of 6×n operations and consists of the March

elements M0, M1, M2, and M3.

M0: for i :=0 to n-1 do

 begin

 A[i] :=0;

 End;

M1: for i :=0 to n-1 do

 begin

 read A[i]; { Check that 0 is read.}

 A[i] :=1;

 End;

M2: for i :=n-1 to 0 do

 begin

 read A[i]; { Check that 1 is read.}

A[i] :=0;

 End;

M3: for i :=n-1 to 0 do

 begin

 Software-Based Self-Testing of WSN Nodes

 35

 read A[i]; { Check that 0 is read.}

End;

The March X algorithm is based on the bit read/write operation. Our register file is 16

bits wide and the word-based test vectors are showed in Table 2.

Table 2 : Word-based Test Vectors for Register Files

March X based on bit Word-based vectors

0101010101010101

0011001100110011

0000111100001111

0000000011111111

0

0000000000000000

1010101010101010

1100110011001100

1111000011110000

1111111100000000

1

1111111111111111

Data/address bus testing

The test routine described here only focuses on SAF of the data bus since the address bus

can be exhaustively tested during embedded FLASH testing (using another March-type

algorithm). The data buses under test consist of two 16-bit ALU input buses and one 16-

bit ALU output bus.

 mov #0xaaaa, r6 (one ALU input bus is set to 1010….1010)

 mov #0x5555, r7 (another ALU input bus is set to 0101….0101)

 add r7,r6 (add value in r7 with value in r6)

 cmp #0xffff, r6 (compare the ALU output bus with 1111….1111)

 jnz Error (if the result is not equal, jump to line Error)

 Software-Based Self-Testing of WSN Nodes

 36

 mov #0x5555, r6 (one ALU input bus is set to 01010….101)

 mov #0xaaaa, r7 (another ALU input bus is set to 10101….010)

 and r7,r6 (value in r7 and value in r6)

 cmp #0x0000, r6 (compare the ALU output bus with 0000….0000)

 jnz Error (if the result is not equal, jump to line Error)

 jmp End (if no error happened, jump to the end of the routine)

Error mov #0x1111, r15 (if there is an error, set specified value to r15 ,

 which is the return value of the subroutine. It will notify

 the main routine there is error in ALU status bus testing)

End (the end of the test routine, return to main routine)

--

3.3 March-type Test Algorithm for Embedded FLASH

Memory

The trend of incorporating growing amounts of FLASH in embedded systems will make

FLASH testing predominant in a wireless node SBST. FLASH is a non-volatile memory

that allows erasing the memory data in blocks. The conventional RAM testing methods

[23] are not applicable because FLASH cannot perform random access erase. An efficient

March-type algorithm (March FT) [25] was proposed for conventional and memory

disturb faults [26]. March FT has the highest fault coverage among the published

approaches. A 100% percent fault coverage is guaranteed with both specific FLASH fault

models and traditional memory fault models. The test routine is written in C language.

The March FT algorithm can be presented as follows:

 (f); �(r1, w0, r0); (r0); (f); �(r1, w0, r0); (r0)

 M0 M1 M2 M3 M4 M5

Here, f means block erase of the FLASH.

March FT Algorithms:

 Software-Based Self-Testing of WSN Nodes

 37

M0: erase FLASH segment block

M1: for i :=0 to n-1 do

 begin

 read A[i]; { Check that 1 is read.}

 A[i] :=0;

 Read A[i]; {check that 0 is read}

 End;

M2: for i :=n-1 to 0 / I ;=0 to n-1 do

 begin

 read A[i]; { Check that 0 is read.}

 End;

M3: erase FLASH segment block

M4: for i :=n-1 to 0 do

 begin

 read A[i]; { Check that 1 is read.}

 A[i] :=0;

 Read A[i]; {check that 0 is read}

 End;

M5: for i :=n-1 to 0 / I ;=0 to n-1 do

 begin

 read A[i]; { Check that 0 is read.}

 End;

The byte-oriented March FT algorithm lists as follows:

(f); �(rFF, w00, r00); (r00); (f); � (rFF, w00, r00); (r00) (f); (w0F); (r0F); (f);

 (wF0); (rF0); (f); (w33); (r33); (f); (wCC); (rCC); (f); (w55); (r55);

(f); (wAA); (rAA);

3.4 Characterization and Testing of RF Module

 Software-Based Self-Testing of WSN Nodes

 38

Failures such as a broken/dislodged antenna or RF circuit parameter drifting can prevent

the RF module from meeting the specifications. For the same reasons cited in previous

sections, we concentrate on an in-field testing scenario, using our network test

architecture. Several wireless nodes with exactly the same hardware structure are used to

test the performance of an RF module. We continuously send test packets and calculate

the required RF specifications with the aid of communication properties (Packet Error

Rate). The test architecture for each specification will be discussed in detail later on. The

test results will be affected not only by the RF transceiver, but also by the printed antenna

performance and by the test environment. The test is held in a real wireless node

application environment and the test results will indicate the performance of our RF

module.

3.4.1 CC2420 RF Transceiver

The RF transceiver integrated in the WSN node is the CC2420 provided by Chipcon. The

CC2420 is a true single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver designed

for low-power and low-voltage wireless applications [44]. The main features of the

CC2420 are listed as follows:

• 2400 – 2483.5 MHz RF Transceiver

• Direct Sequence Spread Spectrum (DSSS) transceiver

• 250 kbps data rate

• Very low current consumption (RX: 19.7 mA, TX: 17.4 mA)

• High receiver sensitivity

• High adjacent/alternate channel rejection

• On-chip VCO, LNA and PA

• Low supply voltage (2.1 – 3.6 V) with on-chip voltage regulator

• Programmable output power (8 levels from 0dBm to -25dBm)

• Separate transmit and receive FIFOs

• Very few external components, only a reference crystal and a minimum number of

passives components are required.

• Easy configuration interface with controller

 Software-Based Self-Testing of WSN Nodes

 39

• 4-wire SPI interface

• Serial clock up to 10 MHz

• 802.15.4 hardware support:

• Automatic preamble generator

• Synchronization word insertion/detection

• CRC-16 computation and checking over the MAC payload

• Clear Channel Assessment

• Energy detection / digital Receive Signal Strength Indicator (RSSI) indication

• Link Quality Indication

The above features reduce the load on the host controller and allow the CC2420 to

interface with a low-cost microcontroller. The configuration interface and

transmit/receive FIFOs of the CC2420 are accessed via an SPI interface through the

USART0 modules of the MSP430F149.

3.4.2 RF Characterization and Specifications Testing

Previous schemes have tested RF specifications in a loopback mode by capturing the test

response in the baseband of the receiver. Here we follow a different approach, and devise

a scheme to characterize the complete RF module (including the antenna) according to a

common protocol for WSNs [45]. The overall testing is performed by communication

among various nodes and controlled by the MSP430F149. The main specification of an

RF transceiver can be calculated by the Friis transmission equation [46] (with the aid of

the required PER under different test conditions in [45]) during wireless network

communication.

() () () () 32.44

20 log () 20 log ()
R T T RP dBm P dBm G dB G dB

f M Hz d km

= + + −
− − (1)

Where PR, PT are the receiving and transmitting signal power; GT, GR are the antenna

gain of the transmitter and the receiver; f is the working frequency and d is the distance

between the transmitter and the receiver.

 Software-Based Self-Testing of WSN Nodes

 40

According to the requirements of the 802.15.4 [45], the specifications of the RF module

are listed in Table 3.

Table 3 : Specification Requirement for IEEE 802.15.4

Parameter Test configuration/ (Specification)

Transmitted power (dBm) Nominal output power: 0dBm / (> -3dBm).

Receiver sensitivity (dBm) The threshold input signal power yielding (<1%) PER
/(<-85dBm)

Adjacent/Alternate

channel rejection

Adjacent/Alternate channel interference level for <1%
PER/ (>0 dB/30 dB)

Transmission Power & Receiver Sensitivity

 Figure 10 shows the test setup for the first two specifications. Received power is

determined for test packets that are continuously sent from the NUT to the TMN using

the registers of the receiver IC. The transmitted power is then calculated from the

received power, frequency and distance using Eqn. (1). Similarly, receiver sensitivity of

the NUT is obtained by sending test packets from TMN to NUT, and searching for the

transmission level at which the 1% PER is observed. Finally, Eqn. (1) directly determines

the receiver sensitivity as the received power at which PER becomes smaller than 1%.

NUT
d

TMN

Figure 10 : Transmitted Power and Receiver Sensitivity Test

In both cases, we ensure that the PER is < 1% by performing sweeps through the

transmission power levels until reaching the 1% threshold.

Adjacent /Alternate Channel Rejection

 Software-Based Self-Testing of WSN Nodes

 41

 A multi-channel physical layer specification requires good interference rejection

between channels. The specification distinguishes adjacent and alternate channels. For

instance, channel 13 has channels 12 and 14 as adjacent, while channels 11 and 15 are

alternate ones.

d2

d1

TMN

NUT

Ad/Al
node

Figure 11 : Test of Adjacent/Alternate Channel Rejection

The test setup for Adjacent/Alternate channel rejection uses three nodes, as seen in Figure

11. The TMN is the transmitter, the NUT is the receiver, and the third node is the

interference source. The signal level from the TMN is set to values required by the

wireless standard. By sweeping through the interference levels, when PER crossing the

1% threshold, we then apply the Friis equation twice. From the given frequencies,

distances d1 and d2 (Figure 11), and the received power levels, we calculate the emitted

power levels. Channel rejection is then equal to the difference in the two power levels,

expressed in dB.

 Software-Based Self-Testing of WSN Nodes

 42

TMN NUTInitialization
set lowest

transmit level Initialization

Initialization

Count the
received packets
store RSSI for
every packets

Sending Packts

Ask caculation

Calculate PER
RSSI average

RSSI deviation

Ask results

results

Sending
Packets

Show results in
Screen

 PER
If PER>1%,

increase transmit
level

Sending Packts

 PER
Until PER<1%,

Count the
received packets
store RSSI for
every packets

 PER

Figure 12 : Sequence Chart of RF Test Codes

The sequence chart of basic test code (in C language) is shown in Figure 12. The detailed

measurement for each specification is described as follows and the results are shown in

Table 4.

Transmitted power: The transmitted power testing is a little different as shown in Figure

10. Instead, the NUT continuously sends test packets to the TMN and the RSSI of the

TMN is calculated. The average RSSI of the TMN, the distance between TMN and NUT,

the working frequency and antenna gains are used to calculate transmission power of the

NUT by the Friis transmission equation under the required PER (<1%). The real test is

implemented based on the following test conditions: f=2.405GHz (channel 11);

d=0.01km; PR=-70.05 dBm (calculated from RSSI value); GT and GR are experimentally -

8 dB [49].

 Software-Based Self-Testing of WSN Nodes

 43

Receiver sensitivity: Programmable output power of the TMN is determined by sweeping

from the lowest output level to the level that achieves the required PER (1%), with the

proper distance between TMN and NUT. The receiver sensitivity is calculated by the

Friis equation. The real test is implemented based on the following test conditions:

f=2.405GHz (channel 11); d=0.0125km; PT= -10 dBm (programmable by CC2420); GT =

GR = -8 dB.

Adjacent channel rejection: Another WSN node with the exact same hardware structure

(adjacent channel working frequency) with a TMN and NUT is used as an interference

source. Here, we use the Friis equation twice. In the first use, the desired RF signal from

the TMN is set to be -82dBm when it reaches the NUT (required from [45]) with the

proper configuration of other factors in the Friis equation. There are two cases for the

second use of the Friis equation.

1. Set the d1=d2, sweeping the output power of the interference source from

low level to high level for the PER crossing 1%. The difference between

TMN output power level and the interference node output power level is

the result for adjacent channel rejection.

2. Set the same output level of the interference node and the TMN, and

increase d2 to find the PER crossing 1%. The distance difference (in dB)

between d1 and d2 is the result for adjacent channel rejection.

The real test is implemented based on the following test conditions: f1=2.405GHz

(channel 11 that is used for TMN and NUT); f2=2.41GHz (channel 12 that is used for

interference source); d1=0.015km; d2=0.0067 km; PT1= PT2= 0dBm (programmable by the

CC2420).

Alternate channel rejection: The test method is similar to the adjacent channel rejection

test except that the interference node works at the alternate channel frequency. By

considering two distances (d1 and d2) and two output power levels (from TMN and from

the interference node), the alternate channel rejection is calculated. The real test is

implemented based on the following test conditions: f1= 2.405GHz (channel 11 that is

 Software-Based Self-Testing of WSN Nodes

 44

used for TMN and NUT); f2= 2.415GHz (channel 13 that is used for interference source);

d1= 0.015km; d2= 0.0019 km; PT1= 0dBm; PT2 = -25dBm (programmable by CC2420).

Based on the test configuration presented in Section 2.4.2, the RF characterization test

results are shown in Table 4. The test results prove that our RF module meets the

specification requirement from [45] and our method efficiently implements the

characterization of the RF module.

Table 4 : RF Module Characterization

Features Required specification Test Result

Transmit power 0dB

(Minimum -3dBm)

-1dBm

Receiver sensitivity Maximum -85dBm -88dBm

Adjacent channel rejection Minimum 0dB 7dB

Alternate channel rejection Minimum 30dB 43dB

 Energy Reduction Methods for WSN Node Testing

 45

Chapter 4

Energy Reduction Methods for WSN Node

Testing

A WSN node is usually battery-powered, making its replacement and recharge difficult

and almost unfeasible during its lifetime. Energy consumption is one of the main

concerns. Energy optimization of hardware, and even more so of software is a complex

problem that is further hampered by lack of accurate power models, especially for

purchased IP cores and COTS processors. Furthermore, energy consumption is a global

phenomenon that depends on the precise interplay of all components in the system

including modern wireless protocols that dynamically adjust the transmission energy.

Calculating the energy consumed during wireless node SBST based on an accurate model

is then beyond our reach. Instead, for the SBST development without a comprehensive

power model, we can rely on measuring the exact consumption profile.

In this chapter, we experimentally measure instruction-level energy profiling using

current measurement architecture proposed in chapter 2. Based on the energy profiling,

instruction-level software energy optimization methods are proposed for CPU core

testing. Time interleaving of different test routines is an efficient system-level energy

optimization method, especially for advanced embedded systems with large sizes of

embedded FLASH memory. We implemented time interleaving in two cases:

interleaving between embedded FLASH testing and RAM testing, as well as interleaving

between FLASH testing and RF packet transmission. Finally, we measure software

energy consumption under different wireless communication modes and conclude that the

 Energy Reduction Methods for WSN Node Testing

 46

beacon transmission scheme is the optimized mode with respect to software energy

consumption.

4.1 Instruction-Level Energy Reduction Methods

According to [32], the energy consumed during the execution of instructions can be

identified as: 1. The base costs of instructions. 2. Overhead costs between adjacent

instructions (inter-instruction cost). The base current of an instruction is measured by

putting several instances of the target instruction in an infinite loop. If a pair of different

instructions, say i and j, is put into an infinite loop for measurement, the current is always

different from the average of the base cost of i or j. The difference is called the overhead

cost of i or j, and is considered as inter-instruction cost. The total energy consumed by a

program is the sum of the total base costs and the total inter-instruction costs, over all the

instructions executed. The contribution of the inter-instruction costs remains small. Most

of the inter-instruction costs are less than 5% of the corresponding base cost [35].

Except for the above mentioned pure base cost and inter-instruction cost, some published

work [35, 38] indicates that there is a dependency between energy consumption of the

instructions and the values of their parameters (operand values, addresses). There are a

large number of experiments showing that the opcode, the instruction fetch address,

register value, register number, data fetch address and immediate operand value can

significantly effect the overall software energy consumption: these are called energy

sensitive factors. From the measurement result in [38], the power consumption is

proportional to the Hamming distance between previous and current values, or the

number of 1’s (weight) in the current values of energy sensitive factors. Compared to the

pure base cost and inter-instruction cost, the above result offers much more information

regarding various software-level power reduction techniques, because it shows that each

cost is not a constant but a function of Hamming distance or weight. The base cost and

inter-instruction cost are useful for power estimation. However, for reduction purposes,

they are less important than the energy sensitive factors because there are fewer

optimizations that can be made with them.

 Energy Reduction Methods for WSN Node Testing

 47

The testing of a WSN node processor core presented here augments the framework in [11]

with a classical dynamic programming approach to code optimization, as in [50]. The

optimization criterion is expressed here in terms of software energy consumption, rather

than the program length, with the instruction energy profile obtained from measurements.

In the absence of good models, we ultimately rely on measuring the node current during a

test. By repeatedly executing short instruction sequences we obtain energy consumption

profiles accurate to the instruction level, which account for energy sensitive factors and

addressing modes, as shown in Figure 13 and Table 5. Energy profiles obtained through

such current measurements let us employ instruction-level energy reduction methods

based on the exact knowledge of the per-instruction energy consumption. Methods used

for energy reduction include instruction selecting and combination with least CPU cycles

and operands selection with least Hamming distance and weight. The exact examples will

be given to show how to implement the operand and instruction selections in the real test

routines at next section.

Figure 13 : Instruction-level Power Consumption

 Energy Reduction Methods for WSN Node Testing

 48

Table 5 : Modes for Instruction-level Power Consumption Test

Mode Description

1 Operand with the maximum Hamming distance

(repeatedly execute mov 0xFFFF, Rn and mov0x0000, Rn,

Hamming distance is max=16)

2
Operand with the minimum Hamming distance and minimum

weight (repeatedly execute mov 0x0000, Rn and mov0x0000, Rn,

Hamming distance is min=0, weight is min=0)

3 Operand with the max weight and min Hamming distance

(repeatedly execute mov 0xFFFF, Rn and mov0xFFFF, Rn,

Hamming distance is min=0, weight is max=16)

4 Mov instruction with register addressing mode

5 Mov instruction with immediate addressing mode

4.1.1 Instruction Selection and Combination

Starting with SBST code generation such as in 3.2.2, our procedure performs a series of

instruction selection towards obtaining energy-optimized test code. We have identified

the set IC;O which consists of those processor instructions I that, during execution, cause

component C to perform operation O. The instructions that belong to the same set IC;O

have different controllability/observability properties since, when operation O is

performed, the inputs of component C are driven by internal processor registers with

different controllability characteristics while the outputs of component C are forwarded

to internal processor registers with different observability characteristics. Therefore, for

every component operation OC, we select an instruction I from the set IC;O (the

instructions with different addressing mode are regarded as different instruction) that

results in selecting the shortest instruction sequences (least CPU cycles) required to apply

the specific operand to component inputs and propagate the component outputs to the

processor primary outputs.

 Energy Reduction Methods for WSN Node Testing

 49

To minimize SBST energy, an instruction selection step (as shown in Example 1) selects

instructions requiring the least amount of CPU cycles, while preserving the test coverage.

Example 1: Let the March X algorithm test a register file. The operation set is OReg =

{Write 0, Read 0, Write 1, Read 1}. Here, the WriteX element can be implemented by

instruction set I (Reg, WriteX) = {mov X, Rn}. We compare the instruction sets that are

used to implement the operation OReg = {Write 0} before and after instruction selection.

The instruction sequences in I1 move the immediate number 0 to each register of

register file. The value in the register file should be all 0 after the instruction set I1. If

there is stuck-a-1 fault in register, it will be detected during Read0 element in March X.

The first instruction in I2 moves immediate number 0 to R1. The rest instructions in I2

move the value in Rn-1 to Rn. The value in register file should be all 0 after I2. If there

is only stuck-a-1 fault in register, it will be detected during Read0 element in March X.

For the case both stuck-at-1 and stuck-at-0 happened and stuck-at-1 happened earlier

than stuck- at-0, Write1 and Read 1 elements in March X algorithm can detect the fault.

The software energy consumption in I2 is lower than in I1. The reason is that mov

instructions with immediate addressing mode (I1) takes two CPU cycles, while mov

instructions with register addressing mode (I2) only cost one CPU cycle. By this

instruction selection, n CPU cycles are saved in I2 while faults are properly detected

even in the presence of faults in registers, hence, without compromising fault coverage.

Instruction combination is another instruction-level reduction method exploiting

collateral coverage for other not-targeted components. We may use the same instruction

sequence for different component testing such as ALU test and data bus test. The

duplicated instruction sequences can be combined with the similar dynamic programming

I2:
mov 0, R1
mov R1, R2
…
mov Rn-1, Rn

I1:
mov 0, R1
mov 0, R2
…
mov 0, Rn

 Energy Reduction Methods for WSN Node Testing

 50

approach in [50]. This instruction combination will decrease the total test program length

without harming fault coverage of each component.

4.1.2 Operand Selection

After instruction selection and combination, we consider the deterministic operands that

should be applied to selected IC;O to test component operation OC with high structural

fault coverage and low energy consumption. The weights of the instruction operands and

the Hamming distance between successive instructions’ operands are of major concern in

energy reduction. An operand set that can satisfy the test requirement of the operation O

of component C is firstly identified. Then we select a deterministic operand with least

weight and Hamming distance from the operand set. The selected operand is applied to

IC;O for component inputs and the component outputs are propagated to the processor

primary outputs.

The operand selection refers to choosing the minimum energy operand that preserves the

given test goal for a given instruction. The implementation of operand selection in the

ALU test routine is shown in Example 2.

Example 2: Consider one of the operations for ALU testing OALU = {add with carry}. We

compare the instruction sequences I3 and I4 obtained before and after operand

selection, respectively. The operand 0x8000 in I4 has the lowest Hamming distance and

weight among operands that test the given ALU fault.

Both I3 and I4 test the ALU operand add with carry by adding two operands that cause

the carry bit. The carry bit will be checked afterwards. I3 move two immediate numbers

0xFFFF to registers with register addressing and add them to cause one carry bit. The

first instruction of I4 moves immediate number 0x8000 to Rn. The second instruction

I4:
mov 0x8000, Rn
mov Rn, Rm
add Rn, Rm

I3:
mov 0xFFFF, Rn
mov 0xFFFF, Rm
add Rn, Rm

 Energy Reduction Methods for WSN Node Testing

 51

moves the value in Rn to Rm with register addressing. The third instruction adds the two

values and also cause one carry bit. As shown in Figure 12, instruction energy

consumption is proportional to Hamming distance and weight of the operand. The value

0x8000 has less weight (only 1) than any other operand such as 0xFFFF (weight is 16) to

test operation of the ALU. Although the Hamming distance of I3 and I4 are the same

(both are 0), I4 use register addressing mode which cost less energy than the immediate

addressing mode used in I3.

Considering both of the above instruction-level energy reduction methods and SBST

proposed in 3.2, the pseudo code of our energy reduction SBST method is shown in

algorithm 1. Steps 1-3 identify CPU component tests, as well as instruction sequences

that test components fully. Step 4 uses the information extracted in the previous steps; the

components that exist in a CPU core are sorted by test priorities. Steps 5-8 apply to each

component test and use the greedy search to find instruction sequences of least software

energy by instruction selection and combination with (step 6), followed by operand

selection with least Hamming distance and weight (step 7).

��� ��� ��������	��
��� � ��������� � 	 �
 �� � � � ����

���� ���� ��������	����� � ���������� ������
 �� � � � ��� ��

� ��� ��������� ��������	������� �� ����
 ��� ��
 � � �� � �� ����� ������ �� �

� ��� � � ������� �� � � �� � �� ! ��� ��" ��� ���# ��

$ ��� %� ����� ����&
' ����' ' �� � �%� ��(� �� �� � �� �) " � � � � ������

�� ���

� ��%� ���*� ���*& �' ���*' ' �� �%� ��� " � �� ��� � ��*�%��) � � ��������

��

+ �� , �� � �� �-� � ��� � � �! # ��� �� � . (� � � � ��/�%��) ���������*��0 # �

� # � �) �� �" �� ! ��)) �� ! ��� ����
 ��� �����
 ��� �� � � �
 �� � � � ��� ��

1 ��� � � -� � ���/�� " � �� � � �� %�-� � ��2 �)) �� ! �� � �� � � � �� � � �3 � �! 4 ���

5 ��� 6 " " -# ��/��� ����� � � �" �� " � ! � �� ��4 � ��� (-���� �� (�" (� ��

�������� � ��

������� �������������������

Algorithm 1: Low-Energy SBST Generation

 Energy Reduction Methods for WSN Node Testing

 52

4.2 Current Measurement for CPU Testing

The above two types of energy reduction methodologies are used for overall CPU core

testing routines. The proposed current measurement architecture is used to measure the

software energy consumption. Figure 14 and Figure 15 show the current measurement

result for the original software energy consumption and the energy consumption after

operand selection and instruction selection/combination, respectively. The energy

consumption and the total number of CPU cycles before and after optimization are

described in Table 6.

Figure 14 : Current Measurement of CPU Testing before Optimization

 Energy Reduction Methods for WSN Node Testing

 53

Figure 15 : Current Measurement of CPU Testing after Optimization

Table 6 : Energy Consumption of CPU Test Routines

Test item Original test Operand selection Instruction selection

Register file test (�J) 1.99 1.87 1.49

ALU test (combined with

data bus testing) (�J)

0.384 0.379 0.354

ALU status bus test (�J) 0.184 0.181 0.17

Total energy (�J) 2.558 2.43 2.014

Total CPU cycles 940 940 751

From these results we can see that after selection of the operand with the least Hamming

distance and weight, although the total number of cycles has not changed, the energy is

reduced by 5%. After selecting instructions with least CPU cycles and combining

identical instructions amongst different algorithms, we can achieve a totally 21.2 %

energy reduction and a 20.1 % time reduction for overall CPU core testing by using all

instruction and combination techniques.

 Energy Reduction Methods for WSN Node Testing

 54

4.3 Efficiency of SBC Addressing in Memory Testing

A method that minimizes the Hamming distance between the consecutive addresses

during March-type tests was introduced in [48]. The authors replace the usual binary

(consecutive) address sequence with the Single Bit Convert (SBC) addressing by which

the address bus transitions are reduced by 50%. The total energy reduction claimed is

between 18% and 77% for different sizes of standalone RAM memories.

Due to the lack of detailed energy models, the energy profiling capability is indispensable

in devising energy-efficient memory SBST. Using measurements we establish that the

SBC method might actually increase energy consumption. Figure 16 compares measured

current for SBC and for that of the binary addressing used in on-chip FLASH testing on

the TI MSP430 processor. Although the SBC addressing draws less average current on

the bus, the overall energy consumption is higher. For embedded memories (such as in

MSP430 processor), the energy overhead (proportional to time * current) in instructions

needed to implement conversion from binary to SBC (e.g. shift, xor and mov) is

more costly than the amount saved by SBC encoding. We conclude that the energy

reduction due to switching activity minimization on the memory bus requires the energy

profiling to infer the energy increased by extra instructions.

Figure 16 : Comparison of Binary and SBC FLASH tests

 Energy Reduction Methods for WSN Node Testing

 55

4.4 Time Interleaving of FLASH and other Tests

FLASH memory can perform only block or chip erase, with the erase operation being

much slower than read or write. Any erase cycle can be initiated from within FLASH

memory or from RAM. When a FLASH segment erase operation is initiated from within

FLASH memory, all timing is controlled by the FLASH controller, and the CPU is held

while the erase cycle completes. After the erase cycle completes, the CPU resumes code

execution.

During a FLASH erase cycle, the CPU can be utilized provided that we test other

components with code executed in RAM, which is the premise of time interleaving,

illustrated in Figure 17. The efficiency of time interleaving depends on the size of the

FLASH, test code, timing and energy consumption of FLASH (erase/program/read) and

other components. There is also a possible overhead in transferring the test code to RAM.

Figure 17 (a) shows a normal test routine sequence and the approximate average power

used. By applying time interleaving, as seen in Figure 17 (b), the tests are rescheduled by

interleaving the FLASH erase cycle and other component testing, causing a reduction in

overall test time and energy consumption:

Time reduction (%) = (TFE+ TOther -TInterleave)/ TTotal

Where TTotal = TCPU +TFE+ TFP+ TFR +TOther , TCPU, TFE, TFP, TFR, TOther and TInterleave are

in Figure 17.

Energy reduction (%) = (EBefore- EAfter)/ EBefore

Where EBefore and EAfter are the total software energy consumed before and after the time

interleaving.

From the above equations, the amount of energy and time reduction due to interleaving

increases both with the size of FLASH memory and with the proportional disparity

 Energy Reduction Methods for WSN Node Testing

 56

between the FLASH and CPU speeds. Both of these are becoming more pronounced with

advances in technology.

t

Flash erase Flash program

Flash erase

t

Flash Read Other component test
CPU test

CPU test Flash program
Flash Read

Other component test

TCPU T FE
T FP TFR TOther

TCPU TInterleave= MAX[TFE �� �� T Other] TFP TFR

P

P

(a)

(b)

Figure 17 : The Concept of Time Interleaving

4.5 Current Measurement for Time Interleaving

We implemented the proposed time interleaving and present the results for two cases:

time interleaving between FLASH and RAM testing, and time interleaving between

FLASH and RF module testing. Table 7 gives the description of the different test routines

in these two cases.

Table 7 : Test Routines (Modes) indicated in Figure 18-22

Mode Description

5 FLASH erase (one block erase-512bytes)

6 FLASH R1, W0, R0 (512bytes)

7 FLASH R0 (512bytes)

8 RAM W0 (ten blocks -5kBytes)

9 RAM R0 (ten blocks - 5kBytes)

A RF Initialization

B RF packets sending (4 packets)

 Energy Reduction Methods for WSN Node Testing

 57

4.5.1 Time-interleaved FLASH and RAM Testing

Figure 18 and Figure 19 show the current measurement result before and after time

interleaving between FLASH erase and RAM testing within embedded memories in the

MSP430 microcontroller (TI), respectively. Since one block (512 bytes) is the minimum

unit for FLASH erases in the MSP430, we will take one block of FLASH testing as an

example to show the efficiency of time interleaving. Since a write/read to RAM is much

faster than to FLASH, to fulfill complete time interleaving, ten blocks of RAM are tested.

Modes 5-7 are the first three elements of the March FT algorithm for FLASH testing and

mode 8-9 are the main elements of the March X algorithm used for RAM testing.

Figure 18 : FLASH and RAM Test Routines before Time Interleaving

 Energy Reduction Methods for WSN Node Testing

 58

Figure 19 : FLASH and RAM Test Routines after Time Interleaving

Table 8 : Energy for FLASH and RAM Test

Test item

(FLASH and RAM test)

Before Time interleaving After Time interleaving

FLASH erase (�J) 143.1

RAM W0 (�J) 73.06

RAM R0 (�J) 78.54

189.94

FLASH r1,w0,r0 (�J) 413.16 421.77

FLASH r0 (�J) 7.92 7.86

Energy total (�J) 715.78 619.57

Time total (ms) 91.24 72.3

From the test result shown in Table 8, the CPU cycles used for FLASH erase and RAM

W/R can be totally interleaved and the energy reduced from 294.7 �J to 189.94 �J. By

time interleaving between the RAM test and FLASH test, we can get a 13.4% energy

reduction and a 20.7% time reduction.

 Energy Reduction Methods for WSN Node Testing

 59

Figure 20 : Energy and Time Measurement Method

Figure 20 shows our measurement method for energy and time for the interleaved

sections. The top line is the instantaneous current measured by scope. The bottom line is

the integral of the top line. Between the two markers we can read the time it cost and the

integral of current (Y). The energy consumed by the code sections can be calculated by Y

* 3.3 (power supply) * 1/1000 (current amplifying gain)

4.5.2 Time-interleaved FLASH and RF Testing

 The time interleaving can also be used between FLASH testing and RF testing. Since RF

transmission costs more energy, the current amplifying gain in this case is 100. A

description of the mode is shown in Table 7. The time interleaving is applied for one

block of FLASH erase and the sending of 4 RF packets, which was chosen because they

were found to have comparable test time.

 Energy Reduction Methods for WSN Node Testing

 60

Figure 21 : FLASH and RF Packets Transmission before Time Interleaving

Figure 22 : FLASH and RF Packet Transmission after Time Interleaving

 Energy Reduction Methods for WSN Node Testing

 61

Table 9 : Energy Consumption for FLASH and RF Testing

Mode Test item Before Time interleaving After Time interleaving

5 FLASH erase 231E-6 (J)

A RF initialization 280.83E-6 (J)

B RF packets sending 983E-6 (J)

1.276E-3 (J)

6 FLASH r1,w0,r0 723.03E-6 (J) 707.46E-6 (J)

7 FLASH r0 13.2E-6 (J) 12.87E-6 (J)

 Energy total 2.236E-3 (J) 1.996E-3 (J)

 Time total 105.2 ms 90.24ms

Table 9 shows the measurement result before and after time interleaving between FLASH

erase and RF packets sending. A 10.7% energy reduction and a 14.2 % time reduction

can be achieved according to the measurement result.

4.6 Energy Considerations for RF Testing

Popular wireless communication protocols have been developed to favor battery-powered

node, such as 804.15.4. These nodes can require duty-cycling to reduce power

consumption so that most of their operational life is spent in a sleep mode. However,

each node shall periodically listen to the RF channel in order to determine whether a

message is pending. This mechanism allows the application designer to decide on the

trade-off between battery consumption and message latency. Listening to the RF channel

continuously is an option to avoid message latency that will lead to higher power

consumption. Table 10 and Figure 23 show the energy consumed by node under different

wireless node operating modes.

 Energy Reduction Methods for WSN Node Testing

 62

Table 10 : Description of Different Wireless Communication Modes

Mode Operating mode description

1 Sending 5 packets with max power level

2 Sending 5 packets with medium power level

3 Sending 5 packets with min power level

4 Sleep mode, wait for periodical beacon packet

5 Always awake, monitoring RF channel continuously

Further, modern wireless protocols incorporate several energy reduction techniques,

including the use of beacon signals. The testing of WSN nodes is periodically activated

by the beacon signal, and the NUT is mostly in the sleep mode between beacons. Figure

23 shows current measurement under the different operating modes of a NUT. Modes 1-3

are sending test packets at different transmission power levels. Mode 4 is the sleep mode.

We do not use the beacon scheme in Mode 5.

Figure 23: Current Consumption Profile of the Node Testing

 Energy Reduction Methods for WSN Node Testing

 63

From the result of Figure 23, it can be concluded that mode 5 is the worst operating mode

among all the operating modes that have been tested, in terms of minimizing the energy

consumption. Mode 4 cost the least amount of energy since the CPU and transceiver are

set to be OFF between two beacons. Modes 1-3 show that energy consumption is

decreased when we set the lower output power levels.

As mentioned in 3.4.2, we use a linear searching method to sweep transmitter output

power from a low level to a high level for RF specifications testing. This searching

algorithm yields a lower energy consumption than any other search algorithms because it

begins from the lowest power levels. The least energy consumption with required PER is

achieved for node testing using the linear searching method. Furthermore, we should also

use the cycling beacon RF communication scheme to activate the node, since the beacon

scheme guarantees that the node works in sleep mode for most of the time.

4.7 Summary

At the beginning of this chapter, based on the current measurement architecture, some

new instruction-level software energy optimization methods are proposed for CPU core

testing. These methods focus on operand selection with least Hamming distance and

weight and on instruction selection and combination with least power consumption. From

the current measurements, a 21.2% reduction in software energy consumption for CPU

core testing is achieved by using the proposed optimization methods. The traditional SBC

addressing method for energy reduction of memory testing has proved to be inefficient

for testing on-chip memory according to the current measurements. Time interleaving of

different test routines has proved to be an efficient system-level energy optimization

method especially for advanced embedded system with large sizes of embedded FLASH

memory. We take one segment (512 bytes) of FLASH testing and 10 segments (5kBytes)

of RAM testing as an example to implement the time interleaving between FLASH

testing code and RAM testing code. A 13.4% energy reduction and 20.5% time reduction

are achieved by this interleaving according to current measurement results. The time

 Energy Reduction Methods for WSN Node Testing

 64

interleaving is also implemented between FLASH testing and RF tests. A 10.7% energy

reduction and 14.2 % time reduction are achieved by this interleaving according to

current measurement results. Finally, we measure the software energy consumption under

different wireless communication modes and conclude that the beacon transmission

scheme is the optimal mode of operation with respect to software energy consumption.

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 65

Chapter 5 ����
Structuring Measurements for Modeling and the
Deployment of Industrial Wireless Networks

The true convenience of interconnecting devices without the use of wires has lead to the

unprecedented success of wireless technologies in the computer and consumer electronics

industry [52]. Various wireless networks are now beginning to appear in industrial

settings. They promise to reduce the cost and save the time needed for the installation and

maintenance of industrial control networks. The large number of cables normally

required in such an environment can be substantially reduced, thus making plant setup

and reconfiguration easier. For example, a typical commercial building can contain

hundreds of sensors that are wired to central air conditioning and ventilation systems.

Replacing wired units with WSN nodes offers more flexibility, and ultimately a better,

energy efficient installation. Eliminating wiring is especially important in industrial

environments where chemicals, vibrations, or moving parts can damage any cabling.

Wireless networking technology poses, however, many challenges [53][55], especially in

guaranteeing the sufficient and reliable coverage during its deployment. Wireless

networking devices are inherently power-limited, which limits the ability to combat

communication channel errors. Even without power limitations, phenomena such as

obstruction and multipath interference on the transmitted signal path make the link

quality hard to predict and design for. The industrial setting, with numerous pieces of

metal machinery, racks and moving parts is especially plagued by link obstruction and

multipath interference. If a transmitter node (TX) is trying to connect to a receiver (RX)

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 66

located in a typical industry environment full of metal surfaces (as shown in Figure 24),

there will be many transmission paths, including a direct Line-of-sight (LOS) connection

path and other multiple-reflection Non-line-of-sight (NLOS) paths. Since each path has

different delay and attenuation, the received signal is badly affected by those destructive

interferences.

nodeTXnodeTXnodeTXnodeRX

nodeTXnodeTX

Metal

LOS

NLOS

NLOS

NLOS

Figure 24: The Real Industry Environment.

The performance of deployed wireless networks greatly depends on the details of the

underlying communication channel [42]. Hence, to evaluate performance of wireless

networks, an accurate communication model is necessary. Until recently, two major

approaches have been in widespread use in the sensor network community: unit disk

modeling and empirical data traces [42]. The unit disc model states that communication

between two wireless nodes is solely a function of the distance and that communication is

conducted without any loss of packets if the nodes are closer than a specified

communication range. However, the complete correlation between the properties of

geometric space and the topology of the network has been refuted by numerous

experiments in actual deployments [39]. At the other end of the spectrum are networks

and communication patterns that are empirical traces of deployed systems. These

networks are, of course, completely accurate samples of real life wireless

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 67

communications. However, it is difficult and expensive to create a large number of

physically large network instances that are properly characterized [42].

Recently, a statistical model of lossy links for wireless sensor network (WSN) was

proposed [42] to produce network models of arbitrary sizes with realistic properties. This

work provides a foundation for extracting the relationship between wireless node

locations (distance) and communication properties (e.g. Reception Rate -RR) using non-

parametric statistical techniques. The objective is to use a non-parametric method to

obtain a Probability Density Function (PDF) that completely characterizes the

relationship between the distance and RR. Based on the study of PDF about properties of

individual and group links, an iterative improvement-based optimization procedure is

used to generate network instances that are statistically similar to empirically observed

network.

The IEEE 802.15.4 standard was finalized in October 2003 with the aim of creating a low

cost, low power, two-way wireless communication solution that meets the requirements

of sensors and control devices. In contrast to other wireless protocols such as IEEE

802.11, IEEE 802.15.4 has been specifically developed for use with applications in which

a static network exists that has many infrequently used devices that transmit only small

data packets. Such applications exactly match the needs of many industrial environments.

The unique properties of wireless links in the 2.4-GHz range (commonly used in IEEE

802.15.4) are: radio waves can penetrate walls and are reflected by several materials. As

a result, multiple copies of a signal may travel on several paths with different distances

from transmitter to receiver. Errors occur not only due to noise, but also due to the

multipath fading. In addition, distance-dependent path loss and co-/adjacent channel

interference influence the channel. Hence, the wave propagation environment (number of

propagation paths, their respective loss) and its time-varying nature (moving people,

machines or wireless nodes) play a dominant role in constituting channel characteristics.

In this chapter, we present our methodology for conducting measurements for the

purpose of assisting in their seamless deployment. We apply this methodology to the

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 68

IEEE 802.15.4 wireless protocol. The chosen measurement scenario shares some

common characteristics of industry environments: many metal surfaces, moving parts,

and machines switching on and off. A targeted set of measurements about the physical

and communication properties of WSN are presented. The measurement results can be

used to set up experimental models for WSN [42] or to evaluate the performance of

wireless networks prior to their deployment to a particular site. Based on the

measurement results, we provide the foundation for analyzing the influence of these

features to the WSN performance and validate their suitability for the actual deployment.

5.1 Measurement Methodology

It is beneficial to parameterize the current wireless link models from “real data”, obtained

from measurements, or to use the measurement results as a motivation for developing

better models. For the deployment of wireless network, some network features

measurements in real application environment can be used to evaluate the performance of

targeted wireless networks and give a guideline for user to make the decision. The

measurement setup is described next.

Table 11 : Wireless Network Testing Features

Testing features (Mi) Testing configuration (Ci)

Transmit Power

level

8 output power levels ranging from 0dBm to -25dBm

Frequency Ranges from 2.405GHz to 2.48GHz, 16 channels in total,

monitors frequency interference in different channels

Packet size 20, 50 and 100 bytes per packet

Antenna polarization 0, 45, 90 degree between transmitter and receiver antenna

Antenna height 0, 50cm height to the ground

Asymmetry Detect the difference of transmission direction of A->B and B->A

Temporal Monitor the relationship of RR and distance during different time

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 69

To delve into the wireless communication characteristics, we develop a series of

measurements to build the statistical relationships with respect to the features that impact

network architecture and protocols in real networks. Our task is to analyze the

relationship between two main properties of wireless network under some features about

common transmitter, receiver and geometrical location. The details about the test features

shown in Table 11 are explained as follows:

Transmit power levels:

One of the fundamental issues that arise naturally in sensor network is the coverage. In

radio communications, coverage means the geographical area within which service from

a radio communications facility can be received. Energy is another key concern with

wireless networks. The proposed power level measurement will try to consider the

coverage and power issues at the same time.

Frequency:

In the future, it will be standard for multiple wireless technologies to be used in a single

environment. This is general not a problem unless the technologies are placed in the same

frequency band. For the protocols at the same band, it is necessary to investigate the

performance of coexisting networks and to find methods for reducing mutual disturbance

between them. The associated interference between IEEE 802.15.4 and IEEE 802.11 is

quantitatively assessed here.

Packet size:

The network performance measurements with different packet sizes are used to

quantitively mention the influence of some protocol design to the wireless

communication performance.

Antenna features:

As mentioned before, low power consumption is critical for the application of WSNs.

The proper location of WSN node and the orientation with respect to the antenna

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 70

directionality can help to reach better coverage, as well as reduce the power consumption

of node.

Asymmetry and Time-variable characteristics:

The measurements presented here try to answer the following questions: Is there an

asymmetry in WSN links? Does the temporal variable cause the change of wireless

communication?

The above measurements are implemented by a pair of WSN nodes; one is a transmitter

and the other is a receiver. The network measurement architecture is shown in Figure 25.

ReceiverTransmitter
�

Figure 25: Wireless Network Measurement Architecture

The pseudo-code for transmitter and receiver are shown as follows:

Transmitter:

Receiver:

��, � ��� � � 4 ��� ��%� � �(�� �������
� � ���4 � �� � %� (-��� � � %�! (�� ��� � �� %�7 8 �� � � � ��

�, � ��� � � 4 ��� ��� � � %�! (�� ��� � ������
������ � � � ��4 � �� � 3 �� � � %�! (�� ��� � ��� �9 8 �� � � � ��
������4 � � ! � ��4 � �7 8 �� � � � �3 ��4 �� � 3 �� � � %�! ��

�%��7 8 �� � � �9 8 �� � � � �� �� �3 � �/�� ! ��� ��
����� � 3 �� � � %�! (�� ��� � ��

����� ���� � � � �� ! �" � � /� � ����
�����9 � � � �: � ��� ���� (-�����
��� � ��0 � � /��� ��4 � �� � %� (-��� � � %�! ����
�

�, � ��� � � 4 ��� ��%� � �(�� �������
� � ���4 � �� � %� (-��� � � %�! (�� ��� � �� %�9 8 �� � � � ��

���, � ��� � � 4 ��� ��� � � %�! (�� ��� � �������
���� �9 � � � �: � �� � 3 �� � � %�! (�� ��� � �%��) �7 8 �� � � � ��
�� ��4 � � ! � ��4 � �9 8 �� � � � �3 ��4 �� � 3 �� � � %�! ��
� ��� (� ��� ! ��4 � �" � � /� � ��� � � �: � � ��
������ � � � ��4 � ��� ���� (-���� �7 8 �� � � � ����
��� � ��0 � � /��� ��4 � �� � %� (-��� � � %�! (�� ��� � ����
�

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 71

TX node RX node

Pick
Config

Send Test config

Wait for
new

config

ACKWait

Change
power

Change
power
& reset
counter

Config new
power?

OK
ACK

Test start

Test end

Count the
received
packets

Result
ACK

New
power

Back to
max power

Back to
max power

Figure 26: Wireless Network Testing Sequence Chart

Figure 26 shows the sequence chart of the code to test the relationship among RR,

distance and output power levels. The testing code for other features has a similar

program sequence.

5.2 Understanding Measurement Results

Our testing is implemented in two kinds of environments: the laboratory (indoors) and

the campus (outdoors). The typical indoors environment includes the furniture (mental or

wood), walls, electronic equipments, e.g. printers, microwave oven. The WSN node is

built with low power microcontroller MSP430 from TI; Zigbee compliant RF transceiver

CC2420 from Chipcon [44] and our own printed antenna. A pair of nodes with the same

hardware is placed at the increasing distances (say, 5m, 10m, 15m, and 20m) with or

without line-of-sight between them. The outdoor environment includes trees and

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 72

buildings. The pair of nodes are placed at the distances (such as 10m, 20m, 40m and 60m)

and at different height, such as near the ground or elevated off the ground. The indoors

and outdoors testing environments are zones covered by the McGill wireless signal

(802.11.b). At each test position, 10,000 test packets are transmitted for packet RR testing.

In summary, the data set used in our testing consisted of packet delivery data for more

than 2 million packets in experiments performed in 2 different environments, 8 different

output power settings, 3 different working channels, 3 different packet sizes, 3 kinds of

antenna polarization, 2 different antenna heights, two transmission directions for

asymmetry and 10 different time points.

5.2.1 Power levels

Power level is an important characteristic of a wireless network node for power

optimisation techniques. Here, the measurements are used to consider the tradeoffs

between the coverage and energy consumption. For the employed Chipcon CC2420 RF

transceiver [44], there are 8 programmable output power levels in total. Figure 27 shows

the relationship between output power and current consumption under different power

levels. We test the relationship between RR and distance under each output power level.

Table 12 : Output power under different power levels

Power level Output Power (dBm) Current Consumption (mA)

8 0 17.4

7 -1 16.5

6 -3 15.2

5 -5 13.9

4 -7 12.5

3 -10 11.2

2 -15 9.9

1 -25 8.5

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 73

Figure 27 shows the 3-D graph of the measured relationship between distances, power

level and RR in outdoor environment. From this graph we can see that for a fixed power

level, RR decreases as the distance is increased. For a fixed distance, RR decreases as the

power level is decreased. At the highest output power level, the communication range can

reach to 60m with the required packet RR. This testing can be used to optimize the power

consumption of the wireless node. With compliance to the required RR and distance, the

output power of the CC2420 should be set as low as possible.

20

40

60 2
4

6
8

0

0.2

0.4

0.6

0.8

1

Power LevelDistance (m)

R
R

Figure 27: The Relationship between RR and Distance under Different Power Levels.

5.2.2 Asymmetry

Asymmetry in communication refers to the difference in RR of packets communicated

strictly between two nodes. Two cases are possible for nodes A and B- first, the

transmitter is A and the receiver is B; second, the transmitter is B and receiver is A.

When the difference is beyond 50%, asymmetry is considered to be happening [42]. Very

often, it is assumed that RR is the same in both directions. We design the tests to capture

whether there is an asymmetry in the RR (as a function of the node distance).

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 74

10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

Distance (m)

R
R

B-->A
A-->B

Figure 28: Dependency on Asymmetric RR to Distance

Figure 28 shows the dependency of asymmetric RR as a function of distance in outdoors

environment. From the result shown in Figure 28, we can see there is big difference (44%)

when the distance is very long (60m). By the definition of asymmetry (50% difference),

it may not be consider as asymmetry. The possible reason for the big difference could be

the minor circuit differences between A and B.

5.2.3 Temporal Variability

The goal of this measurement is trying to find the influence of the measurement time to

the communication link performance (RR). Figure 29 shows the temporal variability of

the relationship between RR and distance in indoor environment. The test is taken from

11AM to 9PM at two hours intervals. There is no obvious trend shown in the graph.

There is only a minor difference (all from 97% to 100%) in the RR. The possible reason

is the interference (e.g. machinery, microwave owens, etc.) applied randomly over time.

We observe that time is not an important factor influencing the relationship between RR

and distance.

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 75

5

10

15

20

10
12

14
16

18
20

22

0.96

0.97

0.98

0.99

1

Distance (m)

Time

R
R

Figure 29: The Relationship of Distance and RR at Different Times

5.2.4 Interference from other wireless networks

Multiple wireless standards can use the same frequency band. The 2.4GHz ISM band is

used for both IEEE 802.15.4 and IEEE 802.11 standards. The next measurement is

designed to give the quantitive assessment about the interference between different

wireless networks.

For the 802.15.4 networks [45], there are totally 16 channels (channel 11 to channel

26)and they are located within the range from the 2.405GHz to 2.48GHz at an interval of

5MHz. The measurement tries to capture the influence of different frequency to

communication performance. Since the printed antenna is narrowband and designed to

tune to Channel 11 (2.405GHz), channel 11 is expect to be the strongest channel with the

highest RR compare to other channels. Figure 30 shows the relationship between RR and

distance for three different channels (channel 11, 26 and 17) indoors.

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 76

2 4 6 8 10 12 14
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Distance (m)

R
R

frequency channel 26
frequency channel 17
frequency channel 11

Figure 30: The Relationship between RR and Distance over Three Different Channels.

From the measurement result, we can see the RR of channel 17 is much lower than

channel 11 and channel 26. The RR of channel 11 is better than channel 26. The reasons

for these observations are explained as following:

1. Using a spectrum analyzer, we can see that there is a wide range of interference within

the frequency band ranges from 2.43GHz to 2.45GHz. The strongest interference is

caused by the 802.11.b wireless internet access (both indoor and outdoor environments).

2. The printed antenna is tuned to channel 11; therefore the antenna performance is best

for this channel. That explains that the RR in channel 11 is higher than RR in channel 26

at each distance, even though there is no wireless interference in both channel 26 and

channel 11.

5.2.5 Packet size

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 77

This measurement is used to detect the dependency of the transmission packet size to the

RR and distance. Figure 31 shows the relationship between RR and distance for three

packet sizes (20 bytes, 50 bytes and 100 bytes) in an indoor environment.

5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Distance (m)

R
R

Package size 20 bytes
Package size 50 bytes
Package size 100 bytes

Figure 31: The Relationship between RR and Distance for Different Packet Sizes

From Figure 31, we can see that when the distance is short, the minimum packets size (20

bytes) corresponds to the best RR. When the distance is long, that tendency is not present.

From the test result, there is no obvious regularity for different packet sizes. We can

conclude that packet size is not one of the important factors affecting communication

properties.

5.2.6 Antenna Features

Antenna is a critical component of wireless node and its design plays an important role

for the whole wireless network performance. Here, we present the measurement for two

kinds of features of the antenna. One is the antenna polarization and the other is the

antenna height above the ground. The measurement results can provide a guideline for

refining the antenna design.

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 78

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Antenna Polarization (degree)

R
R

distance 60m
distance 10m

Figure 32: Dependency of Antenna Polarization to RR and Distance

Figure 32 shows the dependency of RR and antenna polarization at two distances (10m

and 60m) in outdoor environment. There are 3 antenna polarization tested in Figure 32: 0

degree (the antennas of transmitter and receiver are parallel), 45 degree (45 degree angle

between antennas of transmitter and receiver) and 90 degree (the antennas of transmitter

and receiver are perpendicular). From the results shown in Figure 32, the RR is highest

when the antennas are parallel (0 degree) and the lowest RR happened when the antennas

are vertical (90 degree). This result provides a guideline for the node location of wireless

network. The antennas of the nodes in the real wireless network should be a parallel set.

Also we can see from Figure 32, the effect of antenna polarization at short distance (10m)

is not as strong as at long distance (60m). The possible reason is that when distance is

long, the transmission signal is weak and easily affected by antenna polarization.

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 79

10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

Distance (m)

R
R

antenna height 0 cm
antenna height 50 cm

Figure 33: The Relationship between RR and Distance from the Antenna to the

Ground.

Figure 33 shows the relationship between the RR and distance at two antenna heights in

outdoor environment. We set two test conditions: putting the wireless node on ground

and at a height of 50cm to ground. Based on the testing presented above, we can see that

the antenna design and its placement are important factors for the system performance.

5.3 Facilitating Deployment and Model Building

Parts of our measurements results such as the relationship between distance and RR,

asymmetry and temporal variation can be used to help building statistical models for

WSN [42]. The collected data can be used as original data to calculate the probability

density function (PDF) that establish a complete characterization of the relationship

among network features. The PDF provides the likelihood that any particular value of one

feature is associated with a given value of another feature. Based on the PDF of realistic

network features, a series of wireless network generators are developed to produce

Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

 80

networks of an arbitrary size. The generated instances of the network are statistically

similar to the empirically observed networks.

Coverage is a key parameter to evaluate the wireless networks. The coverage of IEEE

802.15.4 can be easily obtained from our power levels measurement. Channels

measurement shows the interference from coexisted wireless networks in the real

industrial application. Both antenna polarization and antenna height shows that proper

node location will increase the coverage as well as decrease the power consumption.

Power and coverage are all key concerns to the deployment of wireless networks.

5.4 Summary

In this chapter, we have developed a methodology for measuring a set of network

features for characterizing links in wireless network communication. Our measurements

can help building communication link models for an arbitrary network that is statistically

similar to observed networks. These measurements also greatly impact the power

management techniques and WSN node location and configuration. For example, the

antenna polarization and height should be considered during node placement. With

required packet RR and distance, the output power levels can be configured as low as

possible to reduce the node energy consumption with required coverage. The insight

gained while building these relationships gives a guideline for developers of protocols,

localized algorithms and antenna design for wireless networks and the users of wireless

products.

 Conclusions and Future Work

 81

Chapter 6

Conclusions and Future Work

In this thesis, we detail out a comprehensive system-level low-power SBST method tuned

for wireless nodes. Individual testing of the main node components, as well as the

combined testing across component boundaries are all considered for power optimization.

The flexible low-cost and low-power test scheme is primarily aimed at in-field testing,

but can be applied to manufacturing test as well. For CPU SBST, instructions with fewest

cycles and operands with least Hamming distance and weight are selected via a dynamic

programming approach. The CPU testing energy reduction of 21.2% is observed by

current measurement on a prototype node. March FT algorithms used to test the

embedded FLASH are similarly passed through the instruction and operand selection

algorithm, as well as the address bus power optimization method. Time interleaving of

the embedded FLASH test and other components’ test routines is a major system-level

technique used to reduce the energy consumption as well as the test time. The new

scheme for characterization and test of the complete RF module is devised. In addition to

the above energy reduction techniques, RF module test can benefit from the transmit

energy optimization and the use of low-power modes native to modern protocols. In the

last chapter, we provided a significant amount of data from wireless network

performance testing that can be efficiently utilized to build statistical models for protocol,

algorithm and hardware design of WSN.

In chapter 5, we use only two WSN nodes to measure the relationship between the

distance and the reception rate under different configurations (individual link properties).

 Conclusions and Future Work

 82

The measurement results can be affected by the specific hardware features of the two

nodes. Some network performance such as asymmetry may not be detected because of

the shortage of collected data; thus, to get better statistical measurement, a real WSN with

more nodes (around 10 nodes) are necessary to delve the group link properties. Group

link properties are joint properties of subsets of links that are related to each other in a

particular way. They include properties of the links that originate from the same

transmitter or received by the same receiver, processed by the same radio, or

communicated by nodes that are geometrically close. These properties answer some

fundamental questions about reasons for particular behavior of communication patterns.

For example, these questions include the hypothesis that the performance of a particular

node as a transmitter mainly depends on the quality of its radio or its geometric position.

During the SBST of a RF module, each WSN node can work as a NUT or an interference

node. At the normal operation of WSN, the test initialization can be broadcast (or

multicast to selected sensor areas) by a TMN using any available broadcast/multicast

mechanism in WSNs; then, the SBST of each node can be parallelized. Therefore, a

TMN need a test management mechanism to organize the SBST of each node and to

choose the interference source according to the proper distance from the interference

node to the NUT.

 Reference

 83

Reference:

[1] N.Y. MANHASSET, “Wireless sensor network use to grow, says study”, EE Times,

Oct. 2005.

[2] M.W. Chiang, Z. Zilic, K. Radecka and J. Chenard, “Architectures of increased

availability wireless sensor network nodes”, Proceedings of International Test

Conference 2004, pp. 1232-1241.

[3] S. Hellebrand and H.J. Wunderlich, “Mixed-mode BIST using embedded processors”,

in Proc. Int. Test Conf., Oct. 1996, pp. 195–204.

[4] F. Brglez, C. Gloster and G. Kedem, “Built-in self-test with weighted random-pattern

hardware,” in Proc. IEEE Int. Conf. Computer Design: VLSI in Computers and

Processors, Sep. 1990, pp. 161–167.

[5] S. Cataldo, S. Chiusano, P. Prinetto and H.J. Wunderlich, “Optimal hardware pattern

generation for functional BIST”, in Proc. Meetings Design, Automation and Test, Mar.

2000, pp. 292–297.

[6] S. Manich, A. Gabarro, M. Lopez, J. Figueras, P. Girard, L. Guiller, C. Landrault, S.

Pravossoudovitch, P. Teixeira and M. Santos, “Low power BIST by filtering

nondetecting vectors”, J. Electron. Test.: Theory Application, June 2000, pp. 193–202.

[7] J. Shen and J. Abraham, “Native Mode Functional Test Generation for

Microprocessors with Applications to Self-Test and Design Validation,” Proc. Int’l Test

Conf., 1998, pp. 990-999.

[8] K. Batcher and C. Papachristou, “Instruction Randomization Self Test for Processor

Cores”, Proc. VLSI Test Symp., 1999, pp. 34-40.

[9] L. Chen and S. Dey, “Software-Based Self-Testing Methodology for Processor

Cores”, IEEE Trans. Compter-Aided Design of Integrated Circuits and Systems, Mar.

2001, pp. 369-380.

 Reference

 84

[10] N. Kranitis, A. Paschalis, D. Gizopoulos and Y. Zorian, “ Effective software self-

test methodology for processor cores” Design, Automation and Test in Europe

Conference and Exhibition, March 2002, pp.592 – 597.

[11] N. Kranitis, A. Paschalis, D. Gizopoulos and G. Xenoulis, “Software-Based Self-

Testing of Embedded Processors”, IEEE Transactions on Computers, April 2005, pp.461

– 475.

[12] A. Krstic, Wei-Cheng Lai, Kwang-Ting Cheng, L. Chen and S. Dey, “Embedded

software-based self-test for programmable core-based designs”, IEEE Design & Test of

Computers, July-Aug. 2002, pp.18-27.

[13] S.M. Thatte and J.A. Abraham, “Test Generation for Microprocessors,” IEEE

Transactions on Computer, 1980, pp. 429-441.

[14] D. B rahme and J.A. Abraham, “Functional Testing of Microprocessors”, IEEE

Transaction on Computers, 1984, pp. 475 – 485.

[15] A.J.van de Goor and Th.J.W. Verhallen, “Functional testing of current

microprocessors (applied to the Intel i860)”, Proceedings of International Test

Conference, 1992, pp. 684-695.

[16] B.S. Joshi and S.H. Hosseini, “Efficient algorithms for Microprocessor Testing”

Proceedings of Annual Reliability and Maintainability symposium, 1998, pp. 100-104.

[17] K. Jayaraman, V.M. Vedula, and J.A. Abraham, “Native mode functional self-test

generation for Systems-on-Chip”, International Symposium on Quality Electronic Design,

March 2002, pp. 280 – 285.

[18] R. Kannah and C.P. Ravikumar, “Functional testing of microprocessors with

graded fault coverage”, Proceedings of the Ninth Asian Test Symposium, Dec. 2000, pp.

204-208.

[19] C. Bellon, R. Velazco and H. Ziade, “Analysis of Experimental Results on

Functional Testing and Diagnosis of Complex Circuits,” In Proc. Intl. Test Conf., 1988,

pp. 64-72.

[20] Alfred Crouch, Design for Test for Digital IC’s and Embedded Core Systems,

Prentice Hall, 1999

[21] P. Pavan, R. Bez, P. Olivo and E. Zanoni, “FLASH memory cells—an overview”,

Proc. of the IEEE, Aug. 1997, pp. 1248– 1271.

 Reference

 85

[22] S. Aritome, R. Shirota, G. Hemink, T. Endoh and F. Mausouka, “Reliability

issues of FLASH memory cells”, Proc. of the IEEE, May 1993, pp. 776–787.

[23] A. J. van de Goor, Testing Semiconductor Memories: Theoryand Practice, John

Wiley & Sons, Chichester, England, 1991.

[24] M.G. Mohammad, K.K. Saluja and A. Yap, “Testing FLASH memories”, in Proc.

13th Int. Conf. VLSI Design, Jan. 2000, pp. 406–411.

[25] Jen-Chieh Yeh, Chi-Feng Wu, Kuo-Liang Cheng and Yung-Fa Chou, “FLASH

memory built-in self-test using March-like algorithms”, Proc. IEEE Intl. Workshop

EDTA, 2002, pp. 137-141.

[26] IEEE 1005 Standard Definitions and Characterization of Floating Gate

Semiconductor Arrays, IEEE Standards Department, Piscataway, 1999.

[27] M. Jarwala, D. Le and M. S. Heutmaker, “End-to-end test strategy for Wireless

Systems,” Intl. Test Conference, 1995, pp. 940-946.

[28] D. Lupea, U. Pursche, H.J. Jentschel, “RF-BIST: Loopback Spectral Analysis”,

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition,

2003, pp. 478-483.

[29] B.R. Veillette and G.W. Roberts, “A built-in self-test strategy for wireless

communication systems,” Proc. Int’l Test Conf., 1995, pp. 930-939.

[30] A. Halder, S. Bhattacharya, G. Srinivasan and A. Chatterjee, “A System-Level

Alternate Test Approach for Specification Test of RF Transceivers in Loopback Mode”

Proc. of the18th International Conference on VLSI Design, Jan. 2005, pp. 289-294.

[31] J. Dabrowski, “BiST model for IC RF-transceiver front-end”, Proc. of IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems, Nov. 2003, pp.

295 – 302.

[32] V. Tiwari, S. Malik and A. Wolfe, “Power Analysis Embedded Software: A First

Step Towards Software Power Minimization,” IEEE Trans. VLSI Systems, Dec. 1994,

pp.437-445.

[33] V. Tiwari, S. Malik, A. Wolfe and M.T.-C. Lee, “Instruction Level Power

Analysis and Optimization Software,” Proc. of ninth Int. Conf. on VLSI Design, Jan.

1996, pp. 326-328.

 Reference

 86

[34] M.T.-C. Lee, V. Tiwari, S. Malik and M. Fujita, “Power Analysis and

Minimization Techniques for Embedded DSP Software,” IEEE Trans. on VLSI Systems,

Mar. 1997, pp. 123- 135.

[35] S. Nikolaidis and T. Laopoulos, “Instruction-level power consumption estimation

embedded processors low-power applications” Proc. of International Workshop on

Intelligent Data Acquisition and Advanced Computing Systems: Technology and

Applications, July 2001, pp. 139 – 142.

[36] S. Steinke, M. Knauer, L. Wehmeyer and P. Marwedel, “An Accurate and Fine

Grain Instruction-Level Energy Model supporting Software Optimizations,” in Proc. of

Int. Workshop on Power and Timing Modeling, Optimization and Simulation, 2001

[37] J.T. Russell and M.R. Jacome, “Software Power Estimation and Optimization for

High Performance, 32-bit Embedded Processors,” in Proc. of Int. Conf. On Computer

Design, Oct. 1998, pp. 328-333.

[38] N. Chang, K.H. Kim and H.G. Lee, “Cycle-accurate energy consumption

measurement and analysis: Case study of ARM7TDMI”, In Proceedings of the

International Symposium on Low Power Electronics and Design, July 2000, pp. 185-190.

[39] A. Cerpa, N. Busek and D. Estrin, “SCALE: A tool for simple connectivity

assessment in lossy environments”, Technical Report 0021, Center for Embedded

Networked Sensing, UCLA, Sep 2003.

[40] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin and S. Wicker,

“Complex behavior at scale: An experimental study of lowpower wireless sensor

networks,” Technical Report 02-0013, Center for Embedded Networked Sensing, UCLA

and IRL, UCB, February 2002.

[41] Y. Zhao and R. Govindan, “Understanding packet delivery performance in dense

wireless sensor networks,” in Proceedings of ACM Sensys, Nov. 2003, pp. 1–13.

[42] A. Cerpa, J.L. Wong, L. Kuang, M. Potkonjak and D. Estrin, “Statistical Model of

Lossy Links in Wireless Sensor Networks”, in Proc. of Fourth International Symposium

on Information Processing in Sensor Networks, April 2005, pp.81 – 88.

[43] Texas Instruments, MSP430x1xx Family User’s Guide, 2004.

[44] Chipcon AS SmartRF CC2420 preliminary datasheet (rev 1.2) 2004.

 Reference

 87

[45] IEEE std. 802.15.4/D18 – 2003: Wireless Medium Access Control (MAC) And

Physical Layer (PHY) specifications for Low Rate Wireless Personal Area Networks

(LR-WPANs).

[46] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, Wiley, second

edition, 1997.

[47] Burr-Brown, INA145 datasheet, 2000.

[48] H. Cheung and S.K. Gupta, “A BIST methodology for comprehensive testing of

RAM with reduced heat dissipation”, in Proc. of International Test Conference, Oct.

1996, pp. 386 – 395.

[49] J. Chenard, C.Y. Chu, Z. Zilic and M. Popovic, “Design methodology for wireless

nodes with printed antennas”, in Proc. of 42nd Design Automation Conference, 2004, pp.

291-296.

[50] A.V. Aho and S.C. Johnson, “Optimal Code Generation for Expression Trees”,

Journal of the ACM, July 1976, pp 488-501.

[51] P.S. Neelakanta and H. Dighe “Robust factory wireless communications: a

performance appraisal of the BluetoothTM and the ZigBeeTM colocated on an industrial

floor”, in Proceedings of the 29th Annual Conference of the IEEE Industrial Electronics

Society, Nov. 2003, pp. 2381-2386.

[52] A. Willig, D. Matheus and A. Wolisz, “Wireless Technologies in Industrial

Networks”, Proc. of the IEEE, June 2005, pp. 1130-1151.

[53] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: A survey,” Computer Network. , pp. 393–422, 2002.

[54] H. Karl and A. Willig, Architectures and Protocols for Wireless Sensor Networks.

Wiley, 2005.

[55] A. J. Goldsmith and S. B. Wicker, “Design challenges for energy-constrained ad

hoc wireless networks,” Wireless Comm., Aug. 2002. pp. 8–27.

