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Abstract 
 

 

Reliable operation of networks consisting of many embedded wireless nodes operating 

under strict cost and energy constraint is a major requirement for their widespread 

acceptance. Towards this goal, we consider self-testing of complete wireless nodes in the 

field through a low-energy software-based self-test (SBST) method. The energy 

consumption of SBST is optimized both for individual components such as a CPU, 

embedded memories, and an RF module, as well as at the system level, considering the 

interplay between module tests. We derive an SBST scheme that utilizes existing CPU 

instructions efficiently by taking the least amount of cycles and selecting operands with 

least Hamming distance and weight to minimize the overall energy consumption of the 

test code. Time interleaving of module tests at the system level is used to further reduce 

the overall test energy consumption. The efficacy of the proposed methods is evaluated 

experimentally, using current measurement circuitry integrated in a wireless sensor 

network node. Finally, we provide a significant amount of data from wireless network 

performance testing that can be efficiently utilized to build statistical models for protocol, 

algorithm and hardware design of wireless sensor network. 
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Résumé 

 

 

Une opération fiable des réseaux de capteurs sans fil soumis à des conditions strictes de 

coût et d'énergie est un des facteurs déterminants pour une utilisation étendue de cette 

nouvelle technologie.  Suivant cet objectif, nous considérons un autotest complet du 

noeud sans fil en utilisant un test intégré à faible consommation énergétique.  Les 

économies d'énergie sont optimisées pour chaque composante telle l'unité centrale de 

traitement, les mémoires intégrées ainsi que le module de transmission radio.  Nous 

dérivons un système utilisant les instructions de l'unité centrale de traitement de façon 

efficace en utilisant le moins de cycles possible.  En sélectionnant les opérations afin que 

leur distance de Hamming soit minimisée, la consommation d'énergie globale du logiciel 

de test intégré est améliorée.  Un entrelacement temporel de l'exécution des tests permet 

d'économiser encore davantage d'énergie.  L'efficacité de la méthode proposée est 

évaluée de façon expérimentale en utilisant un circuit mesurant dynamiquement la 

consommation de courant d'un noeud de réseau de capteurs sans fil. Finalement, nous 

présentons une quantité appréciable de données receuillies à partir de tests de 

performance et pouvant être utilisées pour construire un modèle statistique, utile pour la 

validation de protocoles et la conception de matériel relié aux réseaux de capteurs. 
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Chapter 1  

 

Introduction 
 
1.1 Motivation 
 
In recent years, Wireless Sensor Networks (WSNs) have become available for use in 

various industrial controls, environment monitoring and military applications. According 

to a statistical survey [1], over 53 percent of 200 industrial end-users and systems 

integrators are considering deploying a WSN in 2006. By comparison, a similar survey in 

January found 45 percent of respondents planning to deploy a WSN in 2005. Interest in 

WSNs specifically for industrial monitoring has also increased as 73 percent of 

respondents are researching wireless networks for use in these environments, compared 

to 64 percent of respondents surveyed in January, the study found. Reliability of wireless 

sensor networks were the main reason respondents were delaying deployment, according 

to 33 percent of those surveyed. A WSN is a system composed of small, wireless nodes 

that cooperate on a common distributed application under strict energy, cost, noise and 

maintenance constraints. The ability to build reliable WSNs is essential to their 

acceptance in many applications 

 

To achieve sufficient WSN reliability and availability, the periodic in-field test is needed 

to pinpoint and repair (or bypass) the failed WSN node that might be physically 

unreachable [2]. The environment in which WSNs operate can speed up failure 

mechanisms through, for example, cosmic radiation and extreme temperatures. Therefore, 

the periodic testing of WSN node should be controlled remotely. A testing session might 

result in processing a large volume of vectors that makes the completely remote test 
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vector generation unrealistic. In addition to bandwidth limitations (most WSNs use low-

bandwidth channels), it is not guaranteed that the sent vectors will reach the destination 

node, unless their reception is explicitly confirmed, which is prohibitively energy- and 

time-consuming. Therefore, the rational solution is that each WSN node has a build-in 

self-test architecture. Then, the communication with a tested WSN node happens only 

during the initialization of a test procedure and reporting of the outcome of test sessions. 

The on-board self-test capability of a WSN node is essential for the availability of WSN. 

 

In-field test can be performed using a Built-In Self-Test (BIST) infrastructure 

incorporated into the wireless nodes. Hardware BIST uses embedded hardware test 

generators and test response analyzers to generate and apply test patterns on-chip at the 

speed of the circuit under test. BIST moves the testing task from external Automated Test 

Equipment (ATE) to internal hardware, thereby eliminating the need for an external tester 

and reducing the overall test cost.  Hardware BIST [3, 4, 5, 6], however, faces many 

challenges. The most widely used logic BIST relies on the generation and application of 

pseudorandom test patterns. The fault coverage achieved by pseudorandom testing may 

be low for some random-pattern resistant circuits, such as microprocessor. The insertion 

of the BIST circuitry used for generating and applying pseudorandom patterns may result 

in a significant area and performance overhead. Furthermore, the low cost WSN node is 

often built with commercial off-the-shelf (COTS) components that make extra circuitry 

insertion is not feasible. 

 

Recently, the use of low-cost Software-Based Self-Test (SBST) methodologies has been 

proposed as an effective alternative to hardware BIST, especially for core-based 

architecture. An SBST has a non-intrusive nature as it utilizes the existing on-chip 

programmable controller and related instruction set for both test pattern generation and 

output data evaluation. Therefore, SBST can provide high quality at-speed testing in 

normal operational mode without any performance, area and power overhead. Self-testing 

approaches for microprocessor have been proposed in the literature [7, 8, 9, 10, 11] and a 

review of some of them is given by A. Krstic et al. [12].  An outline of the embedded 

SBST concept is shown in Figure 1. Self-test code and data are downloaded into 
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instruction and data memories from an on-chip memory dedicated for the task of periodic 

in-field testing or from a low-speed, low-cost external ATE. Subsequently, these self-test 

codes are executed at the processor actual speed (at-speed testing) and test responses are 

stored back in the on-chip memory.  

CPU core
at speed test application

On-chip Memory
or

Low Cost ATE Self-test data
Test response

Data Memory

Instruction
Memory

Self-test code

 
Figure 1 : Software-Based Self-Testing Concept 

 

 The published SBST approaches can be classified in two different categories functional 

test and structural test. For the SBST techniques which are functional [7], [8], they use 

random instruction sequences, operations and operands. Such techniques have low test 

development cost due to their high abstraction level, they can also achieve high fault 

coverage with execution of a large number of test instruction sequences. Thus, the 

derived test program is large and requires excessive test execution time. Also, long fault-

simulation time is required for fault grading. For the SBST techniques which are 

structural [9, 10, 11]; they target the components of processor with high structural fault 

coverage and regarded as promising techniques for efficient testing of a processor. Firstly, 

the structural SBST identify processor components and their corresponding operations. 

Secondly, for every Component Under Test (CUT) and for every operation of the CUT, 

test patterns are generated targeting structural faults. Thirdly, the test patterns are 

transformed to self-test routines (consisting of processor instruction sequences) which are 

used to apply test patterns to the inputs of the CUT and collect test responses from the 
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outputs of the CUT. All self-test routines together constitute a test program with stringent 

requirements in code size, data size, and execution time.  

 

WSN nodes are usually battery powered and their replacement and recharge may not 

feasible during their lifetime. Therefore, in addition to the test quality, energy 

consumption is a major concern in testing WSN nodes. Energy optimization of the 

hardware, and even more so for the software is a complex problem that is further 

hampered by lack of accurate power models, especially for purchased IP cores and COTS 

processors. Furthermore, energy consumption depends on the precise interplay of all 

components in the system, including modern wireless protocols that dynamically adjust 

the transmission energy. Calculating the energy consumed during a wireless node SBST 

based on an accurate energy model is thus beyond our reach. Instead, for SBST 

development without a comprehensive energy model, we can rely on measuring the exact 

energy consumption profile. For this, we require a complete WSN node outfitted with 

accurate current sensing circuitry.   

 

Our SBST considers the complete WSN node, including CPU, memories and an RF 

module, as its major components. For the processor core, we design SBST by exploiting 

its instruction set functionality and some knowledge of its structure (e.g., major buses). 

Instruction-level techniques select addressing modes, operands with minimal Hamming 

distance and weight and combine instructions through dynamic programming. The 

increasingly essential FLASH memory is tested by a March-type algorithm implemented 

in energy-efficient test software. An RF module characterization test is further devised. It 

uses our network test architecture to achieve the cooperation of several nodes in finding 

accurately whether the module meets the major parts of the RF specifications. The test 

time and energy consumption are further reduced by the interleaving of module tests, as a 

special case of test scheduling focused around prevalent FLASH test latencies. All the 

major design steps are based on the gathered energy profiling information, rather than 

simplistic models. The proposed techniques are flexible and cost-effective for a variety of 

networked embedded systems. 
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1.2  Thesis Outline 
 

Following the above introduction, chapter 2 will give a literature review of testing 

methodologies for various kernel components of WSN, software energy optimization 

techniques and wireless network performance testing.  

  

In Chapter 3, the general WSN node architecture and network test architecture of WSN 

node are presented first. The SBST method based on instruction set for CPU core is 

presented next. The March FT algorithm is used for word-oriented embedded FLASH 

memory testing. We also present the characterization and testing of RF module based on 

wireless network communication.  

 

In Chapter 4, a current measurement configuration is proposed to monitor the energy 

consumption of the wireless node. Operand’s Hamming distance and weight and 

selection and combination of low power instruction are considered for the instruction-

level low energy concern. Time interleaving of various module is a system-level energy 

reduction method which further reduces the software energy consumption. The efficiency 

of the proposed energy reduction methods is experimentally proved by accurate current 

measurements. 

 

Chapter 5 provides a large number of measurements about the relationship between 

communication properties that can help to build the statistical models for WSNs.  Based 

on the current measurement architecture, the energy consumptions of wireless nodes 

under different operating modes are also presented. 

 

Finally, Chapter 6 summarizes the contributions in this thesis. 
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Chapter 2 

 

Background 
 
In this chapter, we present the related published works for the testing of kernel 

components in WSN node: microprocessor, FLASH memory and RF transceiver.  After 

that, the software energy profiling and optimization techniques are introduced. The 

popular communication models that are used to evaluate WSN performance are discussed 

at last. 

 

2.1 Microprocessor Testing 
 
We have already briefly mentioned the SBST approaches for microprocessor testing in 

chapter 1.  In this section, we will discuss evolution of microprocessor testing methods 

and talk in detail about the different SBST approaches applied for microprocessor testing.   
 

2.1.1 Traditional Structural Testing Methodology 
 

The definition of structural testing is that a form of testing whereby the goal is to verify 

the structure of a chip (the wire connections and the gate truth tables). The opposing form 

of testing is functional or behavioral testing. A microprocessor may be considered to be a 

structure of interconnected logic gates and storage elements. Structural testing can be the 

most difficult to accomplish in a practical manner since much added hardware is usually 

required to increase the controllability (the ability to place nets, nodes, gates, or 
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sequential elements to a known logic state) and observability (the ability to observe nets, 

nodes, gates, or sequential elements after they have been driven to a known logic state) of 

internal signals. Most structural testing is designed to augment functional tests. The 

generation of structural tests requires access to netlists, the interconnection details of the 

design, and fault simulation to evaluate the quality of the test vectors. Consequently, 

structural testing is very rarely used on commercially available microprocessors of 

100,000 transistors or more unless design for testability has been employed during its 

design phases to partition the machine into subunits that can be tested separately. If 

structural information is available for test-set generation, the expected fault coverage for 

this method can fall in the range of 80-99 percent, depending on the size of the subunits 

to be individually tested. 

 

2.1.2 Traditional Functional Testing Methodology 
 

Functional test is defined as a form of testing where a design element is tested by the 

application of functional, operational, or behavioral vectors [20]. Functional test should 

guarantee that the chip meets system specifications. The development of a functional test 

for a microprocessor begins with choosing a system model describing the behavior of the 

microprocessor and a fault model describing deviations from correct behavior of the 

system model.  

 

In the early 1980’s, Thatte, Abraham and Brahme [13, 14] proposed a graph model (s-

graph) at the Register Transfer Level (RTL) to represent a microprocessor and used 

functional level fault models for instruction level test generation. It is considered a 

landmark paper in processor functional testing. This approach models the system 

behavior of a microprocessor as an “execution” graph that represents memory elements 

as nodes. Data flow in the microprocessor is modeled by directed arcs between the nodes 

involved in the transfer. A fault model is used to describe incorrect operation of the 

“execution” graph. The microprocessor is identified by a set of functions such as i) 

register decoding function ii) instruction execution iii) data transfer and data storage 

function and iv) data manipulation functions. A functional fault model is then developed 
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for each of these functions and tests are generated to detect all the faults in the fault 

model. Using the graph method, tests can be generated without detailed knowledge of 

how the instruction execution and control function is implemented. Functional testing 

methods ignore the internal hardware structure and generate the test sequence based on 

the instruction set. Since then, many processor functional testing methodologies have 

been proposed [15, 16, 17, 18, 19]. 

 

The various functional testing approaches may be classified into the following two 

categories: 1. tests based on functional fault models [15, 16, 17, 18]; and 2. tests based on 

the “checking experiment” principle, without assuming any faults models [19]. Those 

traditional functional test approaches had a high level of abstraction, but required a large 

amount of manual effort. Large numbers of tests demand a higher storage capacity of the 

ATE and longer test application time. To reduce the number of tests, some fault grading 

approach are proposed with grading of faults according to probabilities by which they can 

occur in the circuit [18], but very little fault grading was done on structural processor 

netlists, while high fault coverage was not guaranteed. The “checking experiment” 

method assumes no functional fault models. Instead, it emphasizes the conformity of the 

hardware implementation with the architecture level specification. There is a detailed 

report of this methodology by C. Bellon et al. [19] with application to design validation, 

failure analysis and highly dependable system validation. They conclude that the only 

suitable approach to functional testing of microprocessors was an extensive test of the 

representative functionality. However, they also concluded that functional test generation 

could not provide an alternative to structure-level test generation and manufactures still 

had to pay more attention about gate level test generation. 

 

Developing good test programs that can guarantee high fault coverage is not easy, even 

for the designer knowledgeable of the internal structure of chip. An exhaustive 

microprocessor test set is impossible to implement since an exhaustive test of all possible 

combinations of instructions, addressing modes, and data patterns would take years to 

complete. Fault coverage is the only standard to check the efficiency of a proposed 

testing methodology. Fault coverage is defined as the metric of how many faults are 
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exercised and successfully detected (their fault effect is observed) versus the total amount 

of fault content in the circuit under test [20]. A precise estimate of the fault coverage can 

only be made by running fault simulations with the exact application instruction sequence 

as well as with the microprocessor detailed internal structure. In general, for large 

microprocessors, fault coverage of 60 to 80 percent is achievable. The length of this 

functional test is generally O (nR * nI), where nR is the number of registers, nI is the 

number of instructions, and O (*) indicates the order of the quantity enclosed in 

parentheses. So, for complex microprocessors with a large number of registers and 

instructions, the test set can be lengthy. Furthermore, most of them rely on external ATE 

to feed the input test patterns and monitor the test response, in contrast with the SBST 

approaches that apply at- speed in a self-test mode. 

 

2.1.3 SBST of Microprocessor 
 

As mentioned before, the SBST approaches applied to microprocessor can be classified 

in two different categories.  The first category includes the SBST approaches that have a 

high level of abstraction [7, 8] and are functional in nature. The second category includes 

the SBST approaches that are structural in nature [9, 10, 11] and require structural fault-

driven test development. 

 

A functional test methodology [7] generates a random sequence of instructions that 

enumerates all the combinations of the operations and selected operands. Test 

development is performed at a high-level of abstraction based on instruction set 

architecture. However, since test development is not based on a priority fault models, the 

high fault coverage can only be generated by using large test code sequences. 

Furthermore, the use of large code sequences results in excessive test application time 

and very long fault simulation time for fault grading.  

 

A self-test method [8] combines the execution of microprocessor instructions with a 

small amount of on-chip hardware that is used to provide a pseudorandom instruction 

sequence, thus creating a randomized test program along with randomized data operands. 
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Besides the fact that the proposed methodology cannot be considered as a “pure” SBST 

methodology due to the insertion of extra test hardware, the manual effort required for 

test program development is high, while the pseudorandom test sequences result in a very 

long test application time. 

 

The concept of self-test signatures is introduced and a structural testing methodology for 

processor cores is presented by Chen and Dey [9]. There are two stages for the proposed 

SBST methodology. At the test preparation stage, pseudorandom patterns are used for 

each processor components in an iterative method with the consideration of the 

instruction set constraints, based on the knowledge of the gate-level netlist of every 

component. At the test execution stage, pseudorandom test patterns developed in the 

previous stage and producing self-test signatures are stored in embedded memory. Then, 

the pseudorandom test patterns are applied by software test application programs and 

responses are collected into memory again. At the test preparation stage, as an alternative, 

gate level automatic test pattern generator can be used to generate test patterns for 

processor components in the iterative constrained test generation method. The self-testing 

step involves the application of the component tests using a software tester, which 

consists of an on-chip test pattern generation program, a test pattern application program, 

and a test response analysis program, as shown in Figure 2.  This methodology is 

restricted by the need of gate-level details of the processor structure. Such information 

may not be available, but even in the case that it is actually available, the instruction set 

test generation for functional modules of the processor is a very time consuming task, 

which may not lead to acceptable fault coverage. Besides, the pseudorandom nature of 

the methodology leads to large self-test code, large memory requirements and excessive 

test application time. 
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Figure 2 :  Self Test Methodology 

 

A SBST methodology for embedded processor cores [10] that is based on the knowledge 

of the instruction set architecture of the processor and its RTL description is proposed. 

The RTL description showing the connections among the functional units of the 

processor, the storage elements and the steering logic modules is usually available 

information and is much more easily managed than a detailed gate-level netlist. Therefore, 

a limited engineering effort is required. This methodology is based on the application of 

deterministic test patterns targeting structural faults of individual processor components. 

The deterministic tests patterns are not automatic test pattern generator generated but are 

developed by the methodology in order to excite the entire set of operations that each 

component performs. For each component operation, a basic self-test routine is 

developed based on a deterministic test set which maps each operation to a processor 

instruction sequence. The derived self-test code is compact due to the use of small regular 

test sets. The regularity of the basic test sets for the functional module components is 

essential since it is the driving force for the small size of the self-test code and thus its 

small memory requirements. 

 

The SBST [11] goes a further step by defining different test priorities for processor 

components and classifying them according to the defined priorities, proving that high-

level test development based on ISA and RTL description of a complex processor ISA 

can lead to low test cost without sacrificing high fault coverage, independently of 

complex processor implementation and gate-level structure. The proposed SBST 

methodology has the advantages of the functional-based SBST methodologies like test 
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development at high level using the ISA, but goes one step deeper, using RTL 

information and a divide-and conquer approach targeting individual components with 

respect to the stuck-at fault model, thus providing very high fault coverage. The SBST 

methodology [11] has the advantage over other SBST methodology [9] that it is an 

independent test development strategy with gate-level net list required only for fault 

grading purpose. Furthermore, assigning different test priorities to the processor 

components and then developing low-cost test routines for the most critical components 

of the processor results in smaller on-chip memory requirements, shorter test program 

download and test application time while the fault simulation time required for fault 

grading is minimized, thus providing an efficient and low-cost alternative structural 

approach. 

 

2.2  FLASH Memory Testing  
 

The rapid-growing market of portable electronic devices such as mobile phones and 

digital camera has created a large, important demand for FLASH memories. FLASH 

memories are a type of non-volatile memory based on floating-gate transistors [25]. 

There are two kinds of FLASH architecture: NOR and NAND FLASH memory arrays, 

whose programming mechanisms are channel hot electron injection and Fowler-

Nordheim tunneling, respectively. They can store charge or remove charge from the 

floating gate by electrical means. Their in-field programmability and low power 

consumption make FLASH memories widely used in portable devices. New generations 

of FLASH memory have higher capacity and lower access time than their predecessors. 

Various charge mechanisms, cell structures, and array architectures have been developed 

in the past few years [21]. Furthermore, FLASH memories can be embedded in logic 

systems to allow software updates. Embedded FLASH memory cores thus play a very 

important role in the high performance and complex systems. 

 

There are many challenges for embedded FLASH designs. Reliability has been 

considered as the primary test issue for FLASH memories [22]. They are commonly 
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tested for disturbance problems, including read-disturb fault, program-disturb fault, and 

erase-disturb fault.  March test algorithms are widely used for random access memories 

(RAMs) testing [23]. March test is a test consisting of a set of March element; each 

March element performs a finite number of operations on a cell before proceeding to the 

next cell. March tests are the most efficient tests for detecting stuck-at fault (SAF), 

transition fault (TF), address decoder fault (AF), and state coupling fault (CFst). However, 

March tests are not suitable for FLASH memories due to very different physical 

operations. Most FLASH memories can do random read and random program (write 0), 

but cannot do random erase (write 1). Instead, they support block erase or chip erase. The 

erase cycle can be initiated from within FLASH memory. When FLASH erase option is 

initiated, CPU is held while the erase cycle completes. Therefore, March tests for RAMs 

are in general not applicable to FLASH memories. Recently, systematic approaches for 

testing FLASH memories [24, 25] were proposed, in which fault models capture the 

characteristics of disturbances in the memory structure and test algorithms are used to 

detect these faults. Furthermore, the FLASH algorithms [24, 25] are March-like, which 

facilitate the coverage analysis and the test pattern generation. The IEEE 1005 Standard 

Definitions and Characterization of Floating Gate Semiconductor Arrays [26] is used to 

derive realistic fault models for FLASH memory, and then used to develop March-like 

test algorithms for those fault models. The possible disturb mechanisms for NOR-type 

stacked gate FLASH memories include gate program disturbance (GPD), gate erase 

disturbance (GED), drain program disturbance (DPD), drain erase disturbance (DED), 

and read disturbance (RD). A GPD fault occurs when a cell under program (selected cell) 

causes another unprogrammed cell (affected cell) on the same word line to be 

programmed. A GED fault occurs when a cell (selected cell) under program causes 

another programmed cell (affected cell) on the same word line to be erased. The DED 

fault occurs when a cell (selected cell) under program causes another programmed cell 

(affected cell) on the same bit line to be erased. A DPD fault occurs when a cell (selected 

cell) under program causes another unprogrammed cell (affected cell) on the same bit-

line to be programmed. An RD fault occurs on the selected cell. Because the bias 

conditions for reading are the same as for programming, hot electrons can be injected 

from the channel into the FG even if it is at a low gate voltage. Several functional fault 
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models commonly used for testing RAMs are also considered useful for testing non-

volatile memories [23], including SAF, TF, stuck-open fault, address decoder fault, and 

CFst.  

 

Recently, there have been some efforts to test FLASH memory fault models. The March 

EF [24] detects FLASH disturbances with low test complexity. Moreover, a March FT 

algorithm for FLASH memory [25] goes further than March EF. March FT can be 

presented as follows: 

(f); �(r1, w0, r0);  (r0); (f); �(r1, w0, r0);  (r0) 

� (�) - an increasing (decreasing) address order e.g. from address 0 to address n-1 (or  

vice versa),  

 -  address order is irrelevant, 

W0/1 - writing a 0/1 into a cell, 

R0/1 -  reading a cell with expected value 0/1, 

f -  block erase of the FLASH.   

 

Compared to March EF, March FT adds two additional read operations at the second and 

fifth March elements. With two additional read operations, the coverage of stuck-open 

fault and state coupling fault all reaches 100% from 50% and 75% when tested 

individually. March FT algorithm has the advantages that they are more regular, easier to 

generate and cover more functional faults. Compared to the March EF algorithm [24] in 

which the topology information is necessary to explicitly perform row and column 

operations, March FT does not rely on the array geometry, which make it more general 

and applicable to FLASH memory. Most memories in the modern applications are word-

oriented memories. To cover intra-word coupling fault and intra-word gate program 

disturbance, 1 and 0 presented in the March FT algorithm should be replaced by {1111, 

1100, 1010} and {0000, 0011, 0101} for a 4-bit word-oriented FLASH memory, for 

example.  

 

2.3  RF Transceiver Testing 
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Nowadays the RF devices are widely used in wireless electronic products. A high enough 

quality of the RF part is essential to achieve the intended performance of the Wireless 

product. The problem of verifying correctness of the RF circuitry is important, and to 

perform test expensive RF equipment (ATE) still has to be employed. On the other hand, 

the advancing complexity and performance of present RF transceivers are pushing the 

ATE to the edge of its limits. In this context an alternative approach based on the BIST is 

appealing and can alleviate the problem.  

 

Some loopback test schemes are proposed to test RF transceiver to avoid the use of ATE 

[27, 28, 29, 30, 31]. In the loopback test configuration, the transmitter output is looped 

back to the receiver and the test response is captured in the baseband at the output of the 

receiver. The advantage of this loopback scheme is that the receiver and transmitter 

subsystem specification values are decoupled and calculated at the receiver baseband 

(commonly, a DSP is used to analyze the test response). An additional receiver path is 

used in order to increase observabiltiy [27, 28]. In [27], the authors propose in a 

conceptual manner to use a dedicated down-conversion path on the same chip for down-

converting the transmitter output back to baseband; at the same time, by the means of an 

RF coupler, it proposes to feed the transmitter output back into the receiver input. 

However, the concept presented has not been supported by experimental data. In [28], a 

pseudo-random test stimulus is proposed to measure the adjacent channel power rejection 

specification of the transceiver system. The response of the subsystem to this stimulus 

has a large number of frequency bins in the up-converted RF frequency spectrum. 

Therefore, measuring the power over such large number of tones requires long test times 

and expensive RF ATE. In [29], an additional single bit DA converter is used to test the 

receiver path. In [30], an optimized periodic bitstream generated by the DSP and 

modulated by the transmit modulator at the baseband is used as the test stimulus. The 

output of the transmit subsystem to this stimulus is fed back into the receiver subsystem 

using minimal on-board hardware. The test response at the output of the receiver 

subsystem is processed by the DSP and the linear and the nonlinear specifications of the 

transmit and the receive subsystems are computed.    
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An enhanced BIST approach is proposed to deal with the spot defects that can severely 

degrade the performance or result in chip malfunction [31]. The spot defects are layout-

dependent and result in electrical opens and shorts or can produce resistive breaks or 

bridges. The fault models follow those abstraction levels: layout, circuit and functional 

block. A block diagram of the proposed RF transceiver is shown in Figure 3. All the 

functional blocks with the exception of the Power Amplifier (PA), RF filter, diplexer and 

antenna are integrated on one chip. To enable BIST the test amplifier (TA) has been 

added to the chip. The proposed BIST would be arranged in a loop-back configuration, 

where the base-band processor serves both as a stimulus generator and response analyzer. 

The test loop comprising of the transmitter (Tx) and receiver (Rx) path is closed by the 

test amplifier. A possible local test loop aimed at the DA/AD converters is marked with a 

dashed arrow (filters could be included in the test).  

 
Figure 3 :  Block Diagram of RF Transceiver with BIST 

 

They verified that the existence of spot defects at the layout level and resistive break or 

bridges at the circuit level can be mapped into the impairments in RF specifications of the 

functional blocks such as gain, noise figure or IP3. Increased noise figure should display 

low signal-to-noise ratio (SNR) as test response. There is a relation between spot defects 

in the transmitter and the SNR of the response. The relation drives them to choose a test 

with a response sensitive to noise figure and SNR. Hence, the proposed BIST [31] uses 



   
   Background 

  17

the PRBS as the baseband stimulus, and the primary test response would be the bit-error 

rate measured in the baseband. 

 

The loop-back BIST architectures applied to RF front-ends have the advantages that the 

high performance and expensive ATE is avoided by the use of BIST. However, some 

extra circuitry must be added to provide the loopback path. Some faults happened in the 

circuit under test may be masked by the added circuits. The probability of a fault is 

roughly proportional to the chip area, and the probability that the fault is located in the 

test circuitry is proportional to the ratio of the respective areas occupied on a chip [31]. 

The added test circuitry will increase probability of the faults happening. Furthermore, it 

is not feasible to access the internal nodes of COTS RF transceiver and add extra circuit 

for loopback. In this thesis, we will propose an SBST methodology for RF testing with 

the aid of wireless communication among WSN nodes. The SBST methodology avoids 

the adding of extra circuitry. It is a flexible test scheme without area and performance 

loss.  

 

2.4  Instruction-level Power Optimization Methodologies 
 

The increasing popularity of low power mobile product drives the need for analyzing and 

optimizing power consumption in all parts of a system. In the last decade, researchers 

have devoted increasing efforts to reduce the average power consumption in VLSI 

systems during normal operation mode, while power consumption during test operation 

mode was usually neglected. However, during test application, the circuits are subject to 

an activity level higher than normal: the extra power consumption due to the test 

application may thus give rise to severe problems in the circuit reliability. Moreover, it 

can dramatically shorten the battery life when periodic testing of battery-powered 

systems is considered. Nowadays, energy consumption of software has emerged as an 

important metric of a system. Especially for embedded systems, there is a high demand 

for optimization techniques that enable energy reduction for software, since an increasing 

number of applications are powered by batteries. In order to systematically analyze and 

assess this impact, it is important to start at the most practical and fundamental level - the 
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instruction level. Accurate energy profiling and analysis at this level is essential to 

evaluate the software in terms of energy consumption, and also to help software 

developers in their search for low power software implementations [32, 33, 34]. 

 

The average power consumed by a system is given by: P = I * Vdd, where P is the 

average power, I is the average current and Vdd is the supply voltage. The energy, E, 

consumed by a program is further given by: E = P * N * �, where P is the average power, 

N is the number of clock cycles taken by the program and � is the clock period. Thus, the 

ability of testing the current drawn by the CPU during execution of the program is 

essential for measuring its power/energy cost. Loops of hundreds of the same instruction 

or instruction sequences are performed on the processor, and the average drawn current is 

used to get the energy consumption of the instructions.  

 

Due to the lack of accurate power models, measurement-based approaches are widely 

used for software energy analysis. The energy consumption of software is characterized 

by examining the data obtained from real hardware. The advantage of the measurement-

based approaches is that the resulting energy model is close to the actual energy 

consumption behavior of the processor, because the data is acquired from the hardware 

itself. The majority of work published on the field of measurement-based techniques 

refers to the Tiwari method [32] as a base point. In this approach, the software energy 

requirements consist of the unique base cost for each instruction and the inter-instruction 

effects. The base cost for an instruction is defined as the average current drawn by this 

instruction when executed repeatedly in a tight loop, multiplied by the number of cycles 

taken by each instance of the instruction. On the other hand, the inter-instruction effect is 

defined as the additional power cost incurred by executing different instructions 

sequentially. The Tiwari technique is used at other applications [35, 36]. These 

techniques provide a simple framework for software energy estimation by summarizing 

the energy consumption by instructions in the form of a table. However, by relying on the 

average current, they largely ignore the detailed impacts of various factors that affect the 

energy consumption at the instruction level. Moreover, these techniques do not provide 
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the information about the energy variation due to various aspects of instructions such as 

the instruction fetch address and what the operand specifies.  

 

In contrast to the average current measurement, instantaneous current is firstly measured 

by Russel et al. [37], where a digital oscilloscope is used for reading the voltage 

difference over a precision resistor that is inserted between the power supply and the core 

supply pin of the processor. Instantaneous power is then calculated directly from the 

voltage waveform from which average figures are extracted to guide instruction power 

modeling. Resistor-based methodologies suffer from supply voltage fluctuations over the 

processor which reduces the accuracy of the method. A technique to derive more fine-

grained energy consumption is proposed by Chang et al. [38], where they measure the 

cycle-level energy consumption using specific measurement hardware. They also analyze 

the impact of various properties of instructions on the energy consumption, based on this 

measurement method. Using this approach, it is shown that the energy consumption of 

software is dependent on the properties of instructions, such as register numbers, 

immediate operands, Hamming distance of test vector, etc. 

 

2.4.1 Current Measurement Architecture 
 

Conventional processor boards are composed of memory and many other peripherals. 

The best way to remove systems dependent bias during measurement is to use a processor 

board solely composed of a microprocessor core. This is almost impossible in real 

systems, but we can set up an environment for testing with the above conditions.  

 

To investigate the real power consumption of our wireless node, a current measurement 

scheme is built, as shown in Figure 4[1]. It measures the instantaneous current drawn by 

the processor during execution of the test program. The voltage drop measured across a 

small resistor is amplified by the Burr-Brown INA145 programmable-gain amplifier, and 

the output voltage is recorded by the Agilent 54830D oscilloscope, capable of 

synchronizing recording with digital signals D0-3, as with logic analyzers. These signals 

help identify different modes in test routines. We display these modes on the bottom of 



   
   Background 

  20

oscilloscope screen captures. A digital oscilloscope is used for reading the voltage 

difference over a unit resistor that is inserted between the power supply and the core 

supply pins of the processor. The energy consumed by test routines is calculated by 

integrating the product of instantaneous currents with power supply voltage Vdd at the 

node. The current integration is performed by Agilent 54830D. The detailed schematics 

of the PCB board for I to V conversion is shown in Figure 5[1]. 

 

I to V conversion with
amplifying gain

±5V to 3.3V conversion

Node under Test

Agilent
54830D

 Mixed Signal
Oscilloscope

Power supply

v

D0-3

+5V -5V

I3.3 V

 
Figure 4 : Current Measurement Architecture 

 

The +5V and -5V power supply is provided by the HP E3630A triple output DC power 

supply. The ±5V are used as power input for amplifier INA145 and 5V-3.3V regulator in 

I to V conversion board. The NUT board only contains the sole MSP430F149 

microcontroller, external 32 KHz and 8 MHz oscillators, some resisters and capacitors. 

Port 5 (P5.0-P5.3) of MSP430F149 is used to indicate various test modes. The current to 

the NUT is amplified by I to V conversion with amplifying gain and is measured by 

Agilent 54830D 2+16 channel, 600MHz mixed-signal oscilloscope.  

 

Figure 5 shows the schematics of I to V conversion board. The current input to the NUT 

board goes through a unit resistor R3 (1 �) and is equal to the voltage drop of the R3. 

Since the current cost by MSP430F149 is a few tens of mA that is too small to be 

measured by scope, the voltage of R3 (equal to the current to NUT since R3 is 1 � 
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resistor) must to be amplified with proper gain in order to be readable by scope. A 

programmable gain difference amplifier IN145 is used to amplify the voltage of R3.  

 

INA145
Programmable Gain
Difference Amplifier

R3
1�

31 42

78 6 5

3

2

1

5V-3.3V
Regulator

7805

+5V

0.1u

R2
100k

0.1u

R1
1k

0.1u

-5V

Vout = (1+ R2/R1) * I * R3=101 * I

NUT
I

To Scope Vout

 
Figure 5 : Schematics of I to V Conversion Board 

 

The INA145 is a precision, unity-gain difference amplifier consisting of a precision op 

amp and on-chip precision resistor network [47]. Two external resistors (R1 and R2) set 

the gain from 1V/V to 1000V/V. The input common-mode voltage range extends beyond 

the positive and negative rails (single supply: 4.5V to 36V, dual supply: ±2.25V to ±18V). 

Here, according to estimated current cost of NUT, we set the gain as 100 calculated by 

the equation of Figure 5.  A ±5V power supply is provided to INA145 by the external 

triple output DC power supply. The proper value of Vout is measured by the Agilent 

54830D. The 5V-3.3V regulator 7805 is used to provide 3.3V power to the sole chip 

MSP430F149 on NUT. 

 

Figure 6 shows the photo of our real energy measurement architecture for NUT.  
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Figure 6 : Photo of NUT Energy Measurement 

 

2.5  Wireless Network Performance Characterization 
 

The performance of many protocols and algorithms for wireless network greatly depend 

on the underlying communication channel. An accurate communication model plays a 

key role in simulating and evaluating the network performance. Until now, there were 

two approaches that had been widely used in the sensor network community. They are 

unit disk modelling and empirical data traces. However, the unit disk models imply 

complete correlations between the geometric space and the topology of the network, 

which was proved to be wrong by many experiments [39, 40, 41]. The empirical data 

trace approach is difficult and costly when used to characterize large networks. 

 

Recently, there have been a lot of efforts to empirically capture communication patterns 

in wireless sensor network. Low-power COTS radio transceivers chips are used to deduce 
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properties of communication links in wireless networks in several environments, such as 

open space and laboratories. These hybrid models introduce empirically observed factors 

that modify the communication patterns based on the unit disk communication model. A 

non-parametric statistical technique is proposed in [42] which develop an accurate 

simulation of network communication environments that are statistically accurate with 

respect to several features that impact network protocols and algorithms in real networks.  

To generate these simulated environments, they construct a set of models that map 

communication properties such as absolute physical location, relative physical proximity 

and radio transmission power into probability density functions describing packet 

reception likelihood. For all of these models, an interval of confidence is calculated. The 

models can help identify future directions for developers of protocols, localized 

algorithms and power management strategy for wireless sensor networks. 

 

 
[1] The Current Measurement Architecture and I to V conversion board are built by Jean-

Samuel Chenard. 



   
   Software-Based Self-Testing of WSN Nodes 

  24

 

 

Chapter 3 

 

Software-Based Self-Testing of WSN Nodes 

 

Commonly, a wireless node includes a processing part and a communication part. The 

processing part is used to control the functionality of the node and to process and store 

the data. In this case, a microprocessor with embedded memory is used as the processing 

part. The communication part (an RF module in this case) is used to communicate 

amongst the nodes of the wireless network. For in-field testing, we are restricted to the at-

speed BIST approaches because Automatic Test Equipment (ATE) use is impractical. 

Since wireless nodes are currently mostly made of IP cores and COTS parts, the 

possibility of adding self-test hardware is limited, and is certain to cause additional cost 

in hardware and energy consumption. Hence, SBST is the preferred choice. In this 

chapter, SBST methodologies are used to test kernel parts of wireless nodes. First, the 

generic architecture of a wireless node will be given. Second, a component-based SBST 

approach is used for CPU core testing whose aim is to find structural faults (stuck-at 

faults). Third, a March-type algorithm, which is implemented by a microcontroller, is 

used to test the embedded FLASH memory. Finally, an RF module is characterized 

according to the common protocol for WSNs and tested with the aid of wireless 

communication (Packets Error Rate –PER testing). 

 

3.1   Overview of the Node and Test Methodology   
 

A generic wireless node has at minimum an embedded microcontroller and an RF module, 

as seen in Figure 6. A microcontroller with its embedded memory, including a significant 
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amount of FLASH, is used to control the overall node operation and process/store data. It 

can also be used to implement node self-testing and to interpret and/or communicate test 

results. An RF module combines the effects of an RF transceiver, balun circuitry and an 

antenna for seamless wireless transmission within a given specification. Modern RF 

modules support several low-power modes and provide some encryption and Media 

Access Control (MAC) protocol support.  

 

RF module

 
Figure 7 : Generic Node Architecture 

 

High system availability requires quick fault detection and its repair; hence to avoid 

network latency, nodes should test themselves [2], as a part of the broader in-field 

network test architecture. In such a scheme, a dedicated Task Manager Node (TMN) 

remotely activates and then coordinates a self-testing session of a Node Under Test (NUT) 

as shown in Figure 8. The node SBST scenario begins with CPU core self- testing, 

followed by a comprehensive test program for the rest of the system. Testing of the RF 

module and the wireless link characterization amongst different nodes are also performed 

under control of the previously tested CPUs. 
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Figure 8 : Test Architecture of a Wireless Network Node 

 

3.2    SBST of CPU 
 

Our WSN node is equipped with a low-power COTS microcontroller, the MSP430F149. 

The information about the chip is all from the user manual. The gate level structure of the 

microcontroller is not available to us because manufacturers restrict access to the internal 

structure of such devices, claiming proprietary rights to this information. Based on the 

above constraints, a structural SBST methodology [11] is used to test the CPU. The 

SBST methodology is based on the application of deterministic tests targeting structural 

faults of individual controller components. The high coverage (>95%) SBST from [11] 

explores a divide-and-conquer approach targeting individual components for stuck-at 

faults and defines different test priorities for controller components. It combines the 

desirable characteristics of functional testing (like test development at high level using 

the processor instruction set) with a good use of the RTL information. 

 

3.2.1 MSP430F149 Microcontroller 
 

The MSP430F149 is a 16-bit low-power mixed-signal microcontroller provided by Texas 

Instruments (TI). It has the following features [43]: 
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♦ A powerful 16-bit RISC CPU core 

♦ Ultra-low power consumption:  280uA in active mode, 1.6uA in standby mode and 

0.1uA in off mode. 

♦ Five power-saving modes 

♦ The complete MSP430F149 instruction set consists of 27 core instructions. 

♦ 256KB of Embedded FLASH memory and 2KB of RAM 

♦ Two Serial Communication Interfaces (USART), functioning as asynchronous 

UART or Synchronous SPI interfaces. 

♦ A Watchdog Timer Controller and a 16-bit timer/counter.  

 

 
Figure 9 : Block Diagram of MSP430F149 CPU 

 

A block diagram for the CPU core is given in Figure 9 and V, N, Z, C are explained as 

follows:  
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��V: Overflow bit. This bit is set when the result of an arithmetic operation 

overflows the signed-variable range. 

��N: Negative bit. This bit is set when the result of a byte or word operation is 

negative and cleared when the result is not negative. 

��Z: Zero bit. This bit is set when the result of a byte or word operation is 0 and 

cleared when the result is not 0. 

��C: Carry bit. This bit is set when the result of a byte or word operation produced 

a carry and cleared when no carry occurred. 

 

The complete MSP430 instruction set consists of 27 core instructions and 24 emulated 

instructions. The core instructions are those that have unique op-codes decoded by the 

CPU. The emulated instructions are instructions that make the code easier to write and 

read, but do not have op-codes themselves; instead they are replaced automatically by the 

assembler with an equivalent core instruction. There is no code or performance penalty 

for using emulated instruction. There are three core-instruction formats: Dual-operand; 

Single-operand and Jump. The core instruction set is shown in Table 1.  Here S means the 

working register used for source operand and D means the working register for 

destination operand. 

 

Table 1 : The Core Instruction Set of the MSP430F149 

Instruction 
format 

Mnemonic Operation Status Bits 
V       N       Z       C 

MOV Move S to D -       -       -       - 
ADD Add S to D *       *       *       * 
ADDC Add S and C to D *       *       *       * 
SUB Subtract S from D *       *       *       * 
SUBC Subtract S not C form D *       *       *       * 
CMP Compare S and D *       *       *       * 
DADD Add S + C decimally to D *       *       *       * 
BIT Test bit in D 0       *       *       * 
BIC Clear bit in D -       -       -       - 
BIS Set bit in D -       -       -       - 
XOR Logic XOR *       *       *       * 

 
Dual 

operand 
instruction 

AND Logic And 0       *       *       * 
RRA Rotate left arithmetically 0      *       *       * Single 

operand RRC Rotate left through C *       *       *       * 
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PUSH Push S onto stack -       -       -       - 
SWPB Swap bytes -       -       -       - 
CALL Call D -       -       -       - 
RETI Return from interrupt *       *       *       * 

instruction 

SXT Extend sign 0       *       *       * 
JEQ/JZ Jump to label if Z is set  
JNE/JNX Jump to label if Z is reset  
JC Jump to label if C is set  
JNC Jump to label if C is reset  
JN Jump to label if N is set  
JGE Jump to label if N xor V=0  
JL Jump to label if N xor V=1  

Jump 
instruction 

JMP Jump unconditionally  
* The status bit is affected 
– The status bit is not affected 
0 The status bit is cleared 
1 The status bit is set 
 

3.2.2 The Proposed SBST Methodology 

 
Considering the SBST methodology in [11] and the MSP430 CPU core architecture 

illustrated in Figure 9, our SBST approach is implemented in three steps: 

 

Step 1:  Information Extraction. 

 

Identification of processor components and component operations, as well as instructions 

that excite component operations and instructions (or instruction sequences) for 

controlling or observing processor registers is essential. The processing of information 

extraction is summarized as follows: 

1. Find the set of all the processor components C. 

2. Find the set OC of all the operations of each component C, along with the 

corresponding control signals that the processor control unit drives to C for the execution 

of the operation. 

3. Find the set of instructions IC;O that, during their execution, excite the same control 

signals and drive component C to perform the same operation O. 
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4. Find the appropriate instructions or instruction sequences that set the value of 

processor registers. 

5. Find the appropriate instructions or instruction sequences that make the value of 

processor registers observable at primary outputs. 

 

From Figure 9, there are four functional components in the CPU core: ALU, register files, 

data/address bus and ALU output status bus (NVZC).  

OALU = {add, subtract, add with carry bit, subtract with carry bit, compare, add with carry 

bit and the result is decimal, and, or, xor} 

IALU; O = {ADD, ADDC, SUB, SUBC, CMP, DADD, BIT, BIC, BIS, XOR, AND} 

OALUstatus = {four status bit N, V, Z, C are set to be 1/0} 

IALUstatus; O = {JEQ/JZ, JNE/JNZ, JC, JNC, JN, JGE, JL} 

The fault models for data/address bus and register files are SAF and the execution of all 

instructions will affect the values of the bus and register files. The appropriate 

instructions to set values of registers and make the values of registers observable will be 

given in detail in Step 3.   

 

Step 2: Component classification and test priority.  

 

Using the information extracted in Step 1, the components that appear in a processor core 

RTL description are classified in the following three classes: 

��Functional components. The processor components that are directly related to the 

execution of instructions (data processing/data storage) and are in some sense visible 

to the assembly language programmer. These components include: 

1. Computational components, which perform specific arithmetic/logic operations on 

data, e.g. ALU. 

2. Interconnect components between processor components, which serve the data flow 

in a processor datapath.  

3. Storage components, which serve as data storage elements that feed the data to the 

inputs of the computational components and capture their output. Components 

classified in this subcategory include special processor registers visible to the 
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assembly language programmer and the register file. 

��Control components. The components that control either the flow of instructions/data 

inside the processor core or from/to the external environment (memory, peripherals). 

These components include the processor control unit, the instruction and data 

memory controllers that implement instruction fetching and memory handshaking, 

and similar components.  

��Hidden components. The components that are added in the processor architecture 

usually to increase its performance, but they are not visible to the assembly language 

programmer.   

  

Three classes of components have different test priorities. Test priority determines the 

order in which test routines will be developed for each component. High priority 

components will be considered first, while low priority components will be considered 

afterward and only if the achieved overall fault coverage result is not adequate.  

 

From Step 1, the four components in the CPU core are all functional components. The 

ALU is a computational component; the data/address buses and the ALU status bus are 

interconnect components, and the register file is a storage component. The RTL of 

control components and hidden components is not available from the user manual. Our 

tests only focus on the testing of functional components. 

 

Step 3: Test routine development 

 

Development of self-test routines emphasizes using compact loops of instructions by 

considering the optimized software energy consumption (for details refer to Chapter 4). 

The method provides very high fault coverage for most types of architectures of the 

processor components. There are two steps to test routine development: 

��Instruction Selection. For every component operation OC derived from Step 1, we 

select an instruction I from the set IC;O that is the shortest instruction sequence 

required to apply the specific operand to component inputs and propagate the 

component outputs to the primary outputs. 
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��Operand Selection. Application of deterministic operands is considered to each 

component in order to achieve high structural fault coverage and low software 

energy consumption. 

 

3.2.3 Implementation of SBST for Functional Components 
 

Four test routines are developed for testing the ALU, the ALU status bus, the register 

files and the address/data bus. We describe them individually as follows:  

 

ALU testing 

All ALU instructions are executed to test ALU functionality.  We take the code section to 

test ADD and ADDC as an example to illustrate its operation. 

----------------------------------------------------------------------------------------------------------  

         ……….. 

// test with ADD and ADDC instruction//  

          mov #0x0001,r7 (set register 7 with the value of 0x0001) 

          mov #0xf000,r6  (set register 6 with the value of 0xf000) 

          mov #0x0001, r8 (set register 8 with the value of 0x0001) 

          mov #0xff00, r9 (set register 9 with the value of 0xff00) 

          add r9, r6  (add the value in r9 with r6, the carry bit should be 1 now) 

          addc r7, r8  (add the value in r7, r8 with carry bit) 

          cmp #0x0003, r8 (compare the result in r8 with 0x0003) 

          jnz Error (if the result is not equal, jump to line named Error, 

otherwise execute next line ) 

          ..……… 

          ……..... 

         jmp     End  (if no error happened, jump to the end of the routine) 

         Error    mov #0x2222, r15 (if there is an error, set specified value to r15 which  

                                                     is the return value of the subroutine. It will notify  

                                                     the main routine there is error in ALU testing  ) 

         End             (the end of test routine, return to main routine) 
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------------------------------------------------------------------------------------------------------------ 

 

ALU status bus testing 

There are four lines (ZCVN) in the ALU status bus; the four bits are used as conditions in 

jump instructions. All jump instructions are given in Step 1.  By instruction and operand 

selection, the four lines are set to be 1 or 0 individually and the results are proved by the 

execution of jump instructions with different ZCVN values. A section of test code for JZ 

and JNZ is shown as follows: 

------------------------------------------------------------------------------------------------------------ 

// testing the zero bit with JZ and JNZ instructions// 

            mov #0xaaaa, r6 

            mov #0x5555, r7 

            bit  r7,r6  (the value in r7 and the value in r6, the zero bit should be 0) 

            jz Node1 (if the result is equal to 0, jump to line named Node 1) 

jnz Error (if the result is not equal to 0, jump to line named Error. If 

error happened, report the error and the rest will not be 

tested.) 

 

Node1     mov #0x5555, r6 

            mov #0xffff, r7 

            bit  r7,r6     (the value in r7 and the value in r6, the zero bit should be 1) 

            jnz Node2      (if the result is not equal to 0, jump to line named Node 2) 

            jz Error (if the result is equal to 0, jump to line named Error) 

………… 

--------------------------------------------------------------------------------------------------------- 

 

Register file testing 

There are sixteen 16-bit registers in MSP430F149. Since the register file has a very 

regular structure in the form of identical cells, the traditional memory testing 

methodology can be used for register file testing. We use one test of the March family 



   
   Software-Based Self-Testing of WSN Nodes 

  34

called “March X” to test the register files. The fault coverage of March X includes SAFs, 

TFs, CFs and AFs. The scheme of March X is as follows:  

.   
{   (W0); �(R0, W1); �(R1, W0);   (R0)}  

M0         M1              M2                    M3 

 
�(R0, W1) and �(R1, W0) guarantees that the AFs can be detected. SAFs are detected 

since each byte is read with expected value 0 (by M1 and M3) and with expected value 1 

(by M2). All <↑/0> TFs are detected since each segment is read after a ↑ transition (W1 in 

M1 then follows R1 in M2). All <↓/1> TFs are detected since each segment is read after a 

↓ transition (W0 in M2 then follows R0 in M3).  CFs can be totally covered by the March 

X algorithm; the detailed proof can be found in [23]. 

 
 
The March X algorithm requires a total of 6×n operations and consists of the March 

elements M0, M1, M2, and M3. 

 

M0: for i :=0 to n-1 do 

       begin 

              A[i] :=0; 

       End; 

M1: for i :=0 to n-1 do 

       begin 

              read A[i]; { Check that 0 is read.} 

              A[i] :=1; 

       End; 

M2:  for i :=n-1 to 0 do 

        begin 

              read A[i]; { Check that 1 is read.} 

A[i] :=0; 

       End; 

M3: for i :=n-1 to 0 do 

        begin 
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              read A[i]; { Check that 0 is read.} 

End; 

 

The March X algorithm is based on the bit read/write operation. Our register file is 16 

bits wide and the word-based test vectors are showed in Table 2. 

 

Table 2 : Word-based Test Vectors for Register Files 

March X based on bit Word-based vectors 

0101010101010101 

0011001100110011 

0000111100001111 

0000000011111111 

0 

0000000000000000 

1010101010101010 

1100110011001100 

1111000011110000 

1111111100000000 

1 

1111111111111111 

 

Data/address bus testing 

The test routine described here only focuses on SAF of the data bus since the address bus 

can be exhaustively tested during embedded FLASH testing (using another March-type 

algorithm). The data buses under test consist of two 16-bit ALU input buses and one 16-

bit ALU output bus.  

--------------------------------------------------------------------------------------------------------- 

            mov #0xaaaa, r6     (one ALU input bus is set to 1010….1010) 

           mov #0x5555, r7     (another ALU input bus is set to 0101….0101) 

          add  r7,r6                   (add value in r7 with value in r6)    

            cmp  #0xffff, r6         (compare the ALU output bus with 1111….1111) 

            jnz Error                   (if the result is not equal, jump to line Error) 
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           mov #0x5555, r6 (one ALU input bus is set to 01010….101) 

           mov #0xaaaa, r7  (another ALU input bus is set to 10101….010) 

            and  r7,r6  (value in r7 and value in r6)    

            cmp  #0x0000, r6 (compare the ALU output bus with 0000….0000) 

            jnz Error  (if the result is not equal, jump to line Error) 

 

          jmp End (if no error happened, jump to the end of the routine) 

Error        mov #0x1111, r15 (if there is an error, set specified value to r15  ,  

                                                 which is the return value of the subroutine. It will notify  

                                                 the main routine there is error in ALU status bus testing) 

End                                                      (the end of the test routine, return to main routine) 

---------------------------------------------------------------------------------------------------- 

 

3.3   March-type Test Algorithm for Embedded FLASH 

Memory 
 

The trend of incorporating growing amounts of FLASH in embedded systems will make 

FLASH testing predominant in a wireless node SBST. FLASH is a non-volatile memory 

that allows erasing the memory data in blocks. The conventional RAM testing methods 

[23] are not applicable because FLASH cannot perform random access erase. An efficient 

March-type algorithm (March FT) [25] was proposed for conventional and memory 

disturb faults [26]. March FT has the highest fault coverage among the published 

approaches. A 100% percent fault coverage is guaranteed with both specific FLASH fault 

models and traditional memory fault models. The test routine is written in C language. 

The March FT algorithm can be presented as follows: 

                                (f); �(r1, w0, r0);  (r0); (f); �(r1, w0, r0);  (r0) 

        M0                M1                    M2     M3               M4                   M5 

Here, f means block erase of the FLASH.   

 

March FT Algorithms: 
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M0:   erase FLASH segment block  

M1: for i :=0 to n-1 do 

       begin 

              read A[i]; { Check that 1 is read.} 

              A[i] :=0; 

   Read A[i];  {check that 0 is read} 

       End; 

M2:  for i :=n-1 to 0 / I ;=0 to n-1 do 

        begin 

              read A[i]; { Check that 0 is read.} 

       End; 

M3: erase FLASH segment block 

M4: for i :=n-1 to 0 do 

        begin 

              read A[i]; { Check that 1 is read.} 

                A[i] :=0; 

   Read A[i];  {check that 0 is read} 

        End; 

M5:  for i :=n-1 to 0 / I ;=0 to n-1 do 

        begin 

              read A[i]; { Check that 0 is read.} 

        End; 

 

The byte-oriented March FT algorithm lists as follows: 

(f); �(rFF, w00, r00);  (r00); (f); � (rFF, w00, r00);  (r00) (f);  (w0F);  (r0F);  (f); 

 (wF0);  (rF0); (f);  (w33);  (r33); (f);  (wCC);  (rCC); (f);  (w55);  (r55); 

(f);  (wAA);  (rAA); 

 

3.4   Characterization and Testing of RF Module 
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Failures such as a broken/dislodged antenna or RF circuit parameter drifting can prevent 

the RF module from meeting the specifications. For the same reasons cited in previous 

sections, we concentrate on an in-field testing scenario, using our network test 

architecture. Several wireless nodes with exactly the same hardware structure are used to 

test the performance of an RF module. We continuously send test packets and calculate 

the required RF specifications with the aid of communication properties (Packet Error 

Rate). The test architecture for each specification will be discussed in detail later on. The 

test results will be affected not only by the RF transceiver, but also by the printed antenna 

performance and by the test environment. The test is held in a real wireless node 

application environment and the test results will indicate the performance of our RF 

module.  

 

3.4.1 CC2420 RF Transceiver 

 
The RF transceiver integrated in the WSN node is the CC2420 provided by Chipcon. The 

CC2420 is a true single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver designed 

for low-power and low-voltage wireless applications [44]. The main features of the 

CC2420 are listed as follows: 

• 2400 – 2483.5 MHz RF Transceiver  

• Direct Sequence Spread Spectrum (DSSS) transceiver  

• 250 kbps data rate 

• Very low current consumption (RX: 19.7 mA, TX: 17.4 mA)  

• High receiver sensitivity  

• High adjacent/alternate channel rejection   

• On-chip VCO, LNA and PA  

• Low supply voltage (2.1 – 3.6 V) with on-chip voltage regulator  

• Programmable output power (8 levels from 0dBm to -25dBm) 

• Separate transmit and receive FIFOs  

• Very few external components, only a reference crystal and a minimum number of 

passives components are required. 

• Easy configuration interface with controller 
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• 4-wire SPI interface  

• Serial clock up to 10 MHz  

• 802.15.4 hardware support:  

• Automatic preamble generator  

• Synchronization word insertion/detection  

• CRC-16 computation and checking over the MAC payload  

• Clear Channel Assessment  

• Energy detection / digital Receive Signal Strength Indicator (RSSI) indication 

• Link Quality Indication  

 

The above features reduce the load on the host controller and allow the CC2420 to 

interface with a low-cost microcontroller. The configuration interface and 

transmit/receive FIFOs of the CC2420 are accessed via an SPI interface through the 

USART0 modules of the MSP430F149.   

 

3.4.2 RF Characterization and Specifications Testing 
 

Previous schemes have tested RF specifications in a loopback mode by capturing the test 

response in the baseband of the receiver. Here we follow a different approach, and devise 

a scheme to characterize the complete RF module (including the antenna) according to a 

common protocol for WSNs [45]. The overall testing is performed by communication 

among various nodes and controlled by the MSP430F149. The main specification of an 

RF transceiver can be calculated by the Friis transmission equation [46] (with the aid of 

the required PER under different test conditions in [45]) during wireless network 

communication.  

( ) ( ) ( ) ( ) 32.44

20 log ( ) 20 log ( )
R T T RP dBm P dBm G dB G dB

f M Hz d km

= + + −
− −                       (1) 

 

Where PR, PT are the receiving and transmitting signal power; GT, GR are the antenna 

gain of the transmitter and the receiver; f is the working frequency and d is the distance 

between the transmitter and the receiver.  
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According to the requirements of the 802.15.4 [45], the specifications of the RF module 

are listed in Table 3. 

 

Table 3 : Specification Requirement for IEEE 802.15.4  

Parameter Test configuration/ (Specification) 

Transmitted power (dBm) Nominal output power: 0dBm / (> -3dBm). 

Receiver sensitivity (dBm) The threshold input signal power yielding   (<1%) PER 
/(<-85dBm) 

Adjacent/Alternate 

channel rejection 

Adjacent/Alternate channel interference level for <1% 
PER/ (>0 dB/30 dB) 

 
Transmission Power & Receiver Sensitivity 

 Figure 10 shows the test setup for the first two specifications. Received power is 

determined for test packets that are continuously sent from the NUT to the TMN using 

the registers of the receiver IC. The transmitted power is then calculated from the 

received power, frequency and distance using Eqn. (1). Similarly, receiver sensitivity of 

the NUT is obtained by sending test packets from TMN to NUT, and searching for the 

transmission level at which the 1% PER is observed. Finally, Eqn. (1) directly determines 

the receiver sensitivity as the received power at which PER becomes smaller than 1%. 

NUT
d

TMN

 
Figure 10 : Transmitted Power and Receiver Sensitivity Test 

 

In both cases, we ensure that the PER is < 1% by performing sweeps through the 

transmission power levels until reaching the 1% threshold. 

 

Adjacent /Alternate Channel Rejection 
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  A multi-channel physical layer specification requires good interference rejection 

between channels. The specification distinguishes adjacent and alternate channels. For 

instance, channel 13 has channels 12 and 14 as adjacent, while channels 11 and 15 are 

alternate ones.  

d2

d1

TMN

NUT

Ad/Al
node

 
Figure 11 : Test of Adjacent/Alternate Channel Rejection 

 

The test setup for Adjacent/Alternate channel rejection uses three nodes, as seen in Figure 

11. The TMN is the transmitter, the NUT is the receiver, and the third node is the 

interference source. The signal level from the TMN is set to values required by the 

wireless standard. By sweeping through the interference levels, when PER crossing the 

1% threshold, we then apply the Friis equation twice. From the given frequencies, 

distances d1 and d2 (Figure 11), and the received power levels, we calculate the emitted 

power levels. Channel rejection is then equal to the difference in the two power levels, 

expressed in dB.  
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results
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Show results in
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 PER
If PER>1%,
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 PER
Until PER<1%,

Count the
received packets
store RSSI for
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 PER

 
 

Figure 12 : Sequence Chart of RF Test Codes 
 

The sequence chart of basic test code (in C language) is shown in Figure 12.  The detailed 

measurement for each specification is described as follows and the results are shown in 

Table 4. 

 
Transmitted power:  The transmitted power testing is a little different as shown in Figure 

10. Instead, the NUT continuously sends test packets to the TMN and the RSSI of the 

TMN is calculated. The average RSSI of the TMN, the distance between TMN and NUT, 

the working frequency and antenna gains are used to calculate transmission power of the 

NUT by the Friis transmission equation under the required PER (<1%). The real test is 

implemented based on the following test conditions: f=2.405GHz (channel 11); 

d=0.01km; PR=-70.05 dBm (calculated from RSSI value); GT and GR are experimentally -

8 dB [49].  
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Receiver sensitivity: Programmable output power of the TMN is determined by sweeping 

from the lowest output level to the level that achieves the required PER (1%), with the 

proper distance between TMN and NUT. The receiver sensitivity is calculated by the 

Friis equation. The real test is implemented based on the following test conditions: 

f=2.405GHz (channel 11); d=0.0125km; PT= -10 dBm (programmable by CC2420); GT = 

GR = -8 dB. 

 

Adjacent channel rejection: Another WSN node with the exact same hardware structure 

(adjacent channel working frequency) with a TMN and NUT is used as an interference 

source. Here, we use the Friis equation twice. In the first use, the desired RF signal from 

the TMN is set to be -82dBm when it reaches the NUT (required from [45]) with the 

proper configuration of other factors in the Friis equation. There are two cases for the 

second use of the Friis equation.  

1. Set the d1=d2, sweeping the output power of the interference source from 

low level to high level for the PER crossing 1%. The difference between 

TMN output power level and the interference node output power level is 

the result for adjacent channel rejection.  

2.  Set the same output level of the interference node and the TMN, and 

increase d2 to find the PER crossing 1%. The distance difference (in dB) 

between d1 and d2 is the result for adjacent channel rejection.  

The real test is implemented based on the following test conditions: f1=2.405GHz 

(channel 11 that is used for TMN and NUT); f2=2.41GHz (channel 12 that is used for 

interference source); d1=0.015km; d2=0.0067 km; PT1= PT2= 0dBm (programmable by the 

CC2420). 

 

Alternate channel rejection: The test method is similar to the adjacent channel rejection 

test except that the interference node works at the alternate channel frequency. By 

considering two distances (d1 and d2) and two output power levels (from TMN and from 

the interference node), the alternate channel rejection is calculated. The real test is 

implemented based on the following test conditions: f1= 2.405GHz (channel 11 that is 
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used for TMN and NUT); f2= 2.415GHz (channel 13 that is used for interference source); 

d1= 0.015km; d2= 0.0019 km; PT1= 0dBm; PT2 = -25dBm (programmable by CC2420). 

 

Based on the test configuration presented in Section 2.4.2, the RF characterization test 

results are shown in Table 4.  The test results prove that our RF module meets the 

specification requirement from [45] and our method efficiently implements the 

characterization of the RF module. 

 

Table 4 :  RF Module Characterization  

Features Required specification Test Result 

Transmit power 0dB 

(Minimum  -3dBm) 

-1dBm 

Receiver sensitivity Maximum -85dBm -88dBm 

Adjacent channel rejection Minimum 0dB 7dB 

Alternate channel rejection Minimum 30dB 43dB 
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Chapter 4 

 

Energy Reduction Methods for WSN Node 

Testing 
 

A WSN node is usually battery-powered, making its replacement and recharge difficult 

and almost unfeasible during its lifetime. Energy consumption is one of the main 

concerns. Energy optimization of hardware, and even more so of software is a complex 

problem that is further hampered by lack of accurate power models, especially for 

purchased IP cores and COTS processors. Furthermore, energy consumption is a global 

phenomenon that depends on the precise interplay of all components in the system 

including modern wireless protocols that dynamically adjust the transmission energy. 

Calculating the energy consumed during wireless node SBST based on an accurate model 

is then beyond our reach. Instead, for the SBST development without a comprehensive 

power model, we can rely on measuring the exact consumption profile.  

 

In this chapter, we experimentally measure instruction-level energy profiling using 

current measurement architecture proposed in chapter 2. Based on the energy profiling, 

instruction-level software energy optimization methods are proposed for CPU core 

testing. Time interleaving of different test routines is an efficient system-level energy 

optimization method, especially for advanced embedded systems with large sizes of 

embedded FLASH memory. We implemented time interleaving in two cases:  

interleaving between embedded FLASH testing and RAM testing, as well as interleaving 

between FLASH testing and RF packet transmission. Finally, we measure software 

energy consumption under different wireless communication modes and conclude that the 
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beacon transmission scheme is the optimized mode with respect to software energy 

consumption.   

 

4.1 Instruction-Level Energy Reduction Methods  
 

According to [32], the energy consumed during the execution of instructions can be 

identified as: 1. The base costs of instructions. 2. Overhead costs between adjacent 

instructions (inter-instruction cost). The base current of an instruction is measured by 

putting several instances of the target instruction in an infinite loop. If a pair of different 

instructions, say i and j, is put into an infinite loop for measurement, the current is always 

different from the average of the base cost of i or j. The difference is called the overhead 

cost of i or j, and is considered as inter-instruction cost. The total energy consumed by a 

program is the sum of the total base costs and the total inter-instruction costs, over all the 

instructions executed. The contribution of the inter-instruction costs remains small. Most 

of the inter-instruction costs are less than 5% of the corresponding base cost [35].  

 

Except for the above mentioned pure base cost and inter-instruction cost, some published 

work [35, 38] indicates that there is a dependency between energy consumption of the 

instructions and the values of their parameters (operand values, addresses). There are a 

large number of experiments showing that the opcode, the instruction fetch address, 

register value, register number, data fetch address and immediate operand value can 

significantly effect the overall software energy consumption: these are called energy 

sensitive factors. From the measurement result in [38], the power consumption is 

proportional to the Hamming distance between previous and current values, or the 

number of 1’s (weight) in the current values of energy sensitive factors.  Compared to the 

pure base cost and inter-instruction cost, the above result offers much more information 

regarding various software-level power reduction techniques, because it shows that each 

cost is not a constant but a function of Hamming distance or weight. The base cost and 

inter-instruction cost are useful for power estimation. However, for reduction purposes, 

they are less important than the energy sensitive factors because there are fewer 

optimizations that can be made with them. 



   
                          Energy Reduction Methods for WSN Node Testing 

  47

 

The testing of a WSN node processor core presented here augments the framework in [11] 

with a classical dynamic programming approach to code optimization, as in [50]. The 

optimization criterion is expressed here in terms of software energy consumption, rather 

than the program length, with the instruction energy profile obtained from measurements. 

 

In the absence of good models, we ultimately rely on measuring the node current during a 

test. By repeatedly executing short instruction sequences we obtain energy consumption 

profiles accurate to the instruction level, which account for energy sensitive factors and 

addressing modes, as shown in Figure 13 and Table 5. Energy profiles obtained through 

such current measurements let us employ instruction-level energy reduction methods 

based on the exact knowledge of the per-instruction energy consumption. Methods used 

for energy reduction include instruction selecting and combination with least CPU cycles 

and operands selection with least Hamming distance and weight. The exact examples will 

be given to show how to implement the operand and instruction selections in the real test 

routines at next section.  

 
Figure 13 : Instruction-level Power Consumption 
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Table 5 : Modes for Instruction-level Power Consumption Test 

Mode Description 

1 Operand with the maximum Hamming distance 

(repeatedly execute mov 0xFFFF, Rn and mov0x0000, Rn, 

Hamming distance is max=16) 

2 
Operand with the minimum Hamming distance and minimum 

weight (repeatedly execute mov 0x0000, Rn and mov0x0000, Rn, 

Hamming distance is min=0, weight is min=0) 

3 Operand with the max weight and min Hamming distance 

(repeatedly execute mov 0xFFFF, Rn and mov0xFFFF, Rn, 

Hamming distance is min=0, weight is max=16) 

4 Mov instruction with register addressing mode 

5 Mov instruction with immediate addressing mode 

 

4.1.1 Instruction Selection and Combination  

 
Starting with SBST code generation such as in 3.2.2, our procedure performs a series of 

instruction selection towards obtaining energy-optimized test code. We have identified 

the set IC;O which consists of those processor instructions I that, during execution, cause 

component C to perform operation O. The instructions that belong to the same set IC;O 

have different controllability/observability properties since, when operation O is 

performed, the inputs of component C are driven by internal processor registers with 

different controllability characteristics while the outputs of component C are forwarded 

to internal processor registers with different observability characteristics. Therefore, for 

every component operation OC, we select an instruction I from the set IC;O (the 

instructions with different addressing mode are regarded as different instruction) that 

results in selecting the shortest instruction sequences (least CPU cycles) required to apply 

the specific operand to component inputs and propagate the component outputs to the 

processor primary outputs.  
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To minimize SBST energy, an instruction selection step (as shown in Example 1) selects 

instructions requiring the least amount of CPU cycles, while preserving the test coverage. 

Example 1:  Let the March X algorithm test a register file. The operation set is OReg = 

{Write 0, Read 0, Write 1, Read 1}. Here, the WriteX element can be implemented by 

instruction set I (Reg, WriteX) = {mov X, Rn}. We compare the instruction sets that are 

used to implement the operation OReg = {Write 0} before and after instruction selection.  

 

 

 

 

The instruction sequences in I1 move the immediate number 0 to each register of 

register file. The value in the register file should be all 0 after the instruction set I1. If 

there is stuck-a-1 fault in register, it will be detected during Read0 element in March X. 

The first instruction in I2 moves immediate number 0 to R1. The rest instructions in I2 

move the value in Rn-1 to Rn. The value in register file should be all 0 after I2. If there 

is only stuck-a-1 fault in register, it will be detected during Read0 element in March X. 

For the case both stuck-at-1 and stuck-at-0 happened and stuck-at-1 happened earlier 

than stuck- at-0, Write1 and Read 1 elements in March X algorithm can detect the fault. 

 

The software energy consumption in I2 is lower than in I1. The reason is that mov 

instructions with immediate addressing mode (I1) takes two CPU cycles, while mov 

instructions with register addressing mode (I2) only cost one CPU cycle. By this 

instruction selection, n CPU cycles are saved in I2 while faults are properly detected 

even in the presence of faults in registers, hence, without compromising fault coverage. 

 

Instruction combination is another instruction-level reduction method exploiting 

collateral coverage for other not-targeted components. We may use the same instruction 

sequence for different component testing such as ALU test and data bus test.  The 

duplicated instruction sequences can be combined with the similar dynamic programming 

I2: 
mov 0, R1 
mov R1, R2 
… 
mov Rn-1, Rn 
 
 

I1: 
mov 0, R1 
mov 0, R2 
… 
mov 0, Rn 
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approach in [50]. This instruction combination will decrease the total test program length 

without harming fault coverage of each component. 

 

4.1.2 Operand Selection 
 

After instruction selection and combination, we consider the deterministic operands that 

should be applied to selected IC;O to test component operation OC with high structural 

fault coverage and low energy consumption. The weights of the instruction operands and 

the Hamming distance between successive instructions’ operands are of major concern in 

energy reduction. An operand set that can satisfy the test requirement of the operation O 

of component C is firstly identified. Then we select a deterministic operand with least 

weight and Hamming distance from the operand set. The selected operand is applied to 

IC;O for component inputs and the component outputs are propagated to the processor 

primary outputs.  

 

The operand selection refers to choosing the minimum energy operand that preserves the 

given test goal for a given instruction. The implementation of operand selection in the 

ALU test routine is shown in Example 2.  

Example 2: Consider one of the operations for ALU testing OALU = {add with carry}. We 

compare the instruction sequences I3 and I4 obtained before and after operand 

selection, respectively. The operand 0x8000 in I4 has the lowest Hamming distance and 

weight among operands that test the given ALU fault.  

 

 

 

 

Both I3 and I4 test the ALU operand add with carry by adding two operands that cause 

the carry bit. The carry bit will be checked afterwards. I3 move two immediate numbers 

0xFFFF to registers with register addressing and add them to cause one carry bit. The 

first instruction of I4 moves immediate number 0x8000 to Rn. The second instruction 

I4: 
mov 0x8000, Rn 
mov Rn, Rm 
add Rn, Rm 

I3: 
mov 0xFFFF, Rn 
mov 0xFFFF, Rm 
add Rn, Rm 
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moves the value in Rn to Rm with register addressing. The third instruction adds the two 

values and also cause one carry bit. As shown in Figure 12, instruction energy 

consumption is proportional to Hamming distance and weight of the operand. The value 

0x8000 has less weight (only 1) than any other operand such as 0xFFFF (weight is 16) to 

test operation of the ALU. Although the Hamming distance of I3 and I4 are the same 

(both are 0), I4 use register addressing mode which cost less energy than the immediate 

addressing mode used in I3. 

 

Considering both of the above instruction-level energy reduction methods and SBST 

proposed in 3.2, the pseudo code of our energy reduction SBST method is shown in 

algorithm 1. Steps 1-3 identify CPU component tests, as well as instruction sequences 

that test components fully. Step 4 uses the information extracted in the previous steps; the 

components that exist in a CPU core are sorted by test priorities. Steps 5-8 apply to each 

component test and use the greedy search to find instruction sequences of least software 

energy by instruction selection and combination with (step 6), followed by operand 

selection with least Hamming distance and weight (step 7).  
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Algorithm 1: Low-Energy SBST Generation 
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4.2 Current Measurement for CPU Testing 
     

The above two types of energy reduction methodologies are used for overall CPU core 

testing routines. The proposed current measurement architecture is used to measure the 

software energy consumption. Figure 14 and Figure 15 show the current measurement 

result for the original software energy consumption and the energy consumption after 

operand selection and instruction selection/combination, respectively. The energy 

consumption and the total number of CPU cycles before and after optimization are 

described in Table 6.  

 
Figure 14 : Current Measurement of CPU Testing before Optimization 
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Figure 15 : Current Measurement of CPU Testing after Optimization 

 

Table 6 : Energy Consumption of CPU Test Routines 

Test item Original test Operand selection Instruction selection 

Register file test (�J) 1.99 1.87 1.49 

ALU test (combined with 

data bus testing) (�J) 

0.384 0.379 0.354 

ALU status bus test (�J) 0.184 0.181 0.17 

Total energy (�J) 2.558 2.43 2.014 

Total CPU cycles 940 940 751 

 

From these results we can see that after selection of the operand with the least Hamming 

distance and weight, although the total number of cycles has not changed, the energy is 

reduced by 5%. After selecting instructions with least CPU cycles and combining 

identical instructions amongst different algorithms, we can achieve a totally 21.2 % 

energy reduction and a 20.1 % time reduction for overall CPU core testing by using all 

instruction and combination techniques. 
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4.3 Efficiency of SBC Addressing in Memory Testing 
 
A method that minimizes the Hamming distance between the consecutive addresses 

during March-type tests was introduced in [48]. The authors replace the usual binary 

(consecutive) address sequence with the Single Bit Convert (SBC) addressing by which 

the address bus transitions are reduced by 50%. The total energy reduction claimed is 

between 18% and 77% for different sizes of standalone RAM memories.  

 

Due to the lack of detailed energy models, the energy profiling capability is indispensable 

in devising energy-efficient memory SBST. Using measurements we establish that the 

SBC method might actually increase energy consumption. Figure 16 compares measured 

current for SBC and for that of the binary addressing used in on-chip FLASH testing on 

the TI MSP430 processor. Although the SBC addressing draws less average current on 

the bus, the overall energy consumption is higher. For embedded memories (such as in 

MSP430 processor), the energy overhead (proportional to time * current) in instructions 

needed to implement conversion from binary to SBC (e.g. shift, xor and mov) is 

more costly than the amount saved by SBC encoding. We conclude that the energy 

reduction due to switching activity minimization on the memory bus requires the energy 

profiling to infer the energy increased by extra instructions. 

 

Figure 16 : Comparison of Binary and SBC FLASH tests 
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4.4 Time Interleaving of FLASH and other Tests 
  

FLASH memory can perform only block or chip erase, with the erase operation being 

much slower than read or write. Any erase cycle can be initiated from within FLASH 

memory or from RAM. When a FLASH segment erase operation is initiated from within 

FLASH memory, all timing is controlled by the FLASH controller, and the CPU is held 

while the erase cycle completes. After the erase cycle completes, the CPU resumes code 

execution.  

 

During a FLASH erase cycle, the CPU can be utilized provided that we test other 

components with code executed in RAM, which is the premise of time interleaving, 

illustrated in Figure 17. The efficiency of time interleaving depends on the size of the 

FLASH, test code, timing and energy consumption of FLASH (erase/program/read) and 

other components. There is also a possible overhead in transferring the test code to RAM. 

 

Figure 17 (a) shows a normal test routine sequence and the approximate average power 

used. By applying time interleaving, as seen in Figure 17 (b), the tests are rescheduled by 

interleaving the FLASH erase cycle and other component testing, causing a reduction in 

overall test time and energy consumption:  

Time reduction (%) = (TFE+ TOther -TInterleave)/ TTotal 

Where TTotal = TCPU +TFE+ TFP+ TFR +TOther , TCPU, TFE, TFP, TFR, TOther and TInterleave are 

in Figure 17.  

Energy reduction (%) = (EBefore- EAfter)/ EBefore 

Where EBefore and EAfter are the total software energy consumed before and after the time 

interleaving.  

 

From the above equations, the amount of energy and time reduction due to interleaving 

increases both with the size of FLASH memory and with the proportional disparity 
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between the FLASH and CPU speeds. Both of these are becoming more pronounced with 

advances in technology.  

t

Flash erase Flash program

Flash erase

t

Flash Read Other component test
CPU test

CPU test Flash program
Flash Read

Other component test

TCPU T FE
T FP TFR TOther

TCPU TInterleave= MAX[TFE �� �� T Other] TFP TFR

P

P

(a)

(b)

 
Figure 17 : The Concept of Time Interleaving 

 

4.5 Current Measurement for Time Interleaving  
 

We implemented the proposed time interleaving and present the results for two cases: 

time interleaving between FLASH and RAM testing, and time interleaving between 

FLASH and RF module testing. Table 7 gives the description of the different test routines 

in these two cases.  

 

Table 7 : Test Routines (Modes) indicated in Figure 18-22   

Mode Description 

5 FLASH erase (one block erase-512bytes) 

6 FLASH R1, W0, R0  (512bytes) 

7 FLASH R0   (512bytes) 

8 RAM W0 (ten blocks -5kBytes) 

9 RAM R0 (ten blocks - 5kBytes) 

A RF Initialization 

B RF packets sending (4 packets) 
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4.5.1 Time-interleaved FLASH and RAM Testing 
 

Figure 18 and Figure 19 show the current measurement result before and after time 

interleaving between FLASH erase and RAM testing within embedded memories in the 

MSP430 microcontroller (TI), respectively. Since one block (512 bytes) is the minimum 

unit for FLASH erases in the MSP430, we will take one block of FLASH testing as an 

example to show the efficiency of time interleaving. Since a write/read to RAM is much 

faster than to FLASH, to fulfill complete time interleaving, ten blocks of RAM are tested. 

Modes 5-7 are the first three elements of the March FT algorithm for FLASH testing and 

mode 8-9 are the main elements of the March X algorithm used for RAM testing. 

 

 
Figure 18 : FLASH and RAM Test Routines before Time Interleaving 
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Figure 19 : FLASH and RAM Test Routines after Time Interleaving 

 

Table 8 : Energy for FLASH and RAM Test 

Test item 

(FLASH and RAM test) 

Before Time interleaving After Time interleaving 

FLASH erase (�J) 143.1 

RAM W0 (�J) 73.06 

RAM R0 (�J) 78.54 

189.94 

FLASH r1,w0,r0 (�J) 413.16 421.77 

FLASH r0 (�J) 7.92 7.86 

Energy total (�J) 715.78 619.57 

Time total  (ms) 91.24 72.3 

 

From the test result shown in Table 8, the CPU cycles used for FLASH erase and RAM 

W/R can be totally interleaved and the energy reduced from 294.7 �J to 189.94 �J. By 

time interleaving between the RAM test and FLASH test, we can get a 13.4% energy 

reduction and a 20.7% time reduction. 
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Figure 20 : Energy and Time Measurement Method 

 

Figure 20 shows our measurement method for energy and time for the interleaved 

sections. The top line is the instantaneous current measured by scope. The bottom line is 

the integral of the top line. Between the two markers we can read the time it cost and the 

integral of current (Y). The energy consumed by the code sections can be calculated by Y 

* 3.3 (power supply) * 1/1000 (current amplifying gain) 

 

4.5.2 Time-interleaved FLASH and RF Testing 
 

 The time interleaving can also be used between FLASH testing and RF testing. Since RF 

transmission costs more energy, the current amplifying gain in this case is 100.  A 

description of the mode is shown in Table 7. The time interleaving is applied for one 

block of FLASH erase and the sending of 4 RF packets, which was chosen because they 

were found to have comparable test time. 
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Figure 21 : FLASH and RF Packets Transmission before Time Interleaving 

 

 
Figure 22 :  FLASH and RF Packet Transmission after Time Interleaving 
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Table 9 : Energy Consumption for FLASH and RF Testing 

Mode Test item Before Time interleaving After Time interleaving 

5 FLASH erase 231E-6  (J) 

A RF initialization 280.83E-6 (J) 

B RF packets sending 983E-6 (J) 

1.276E-3 (J) 

6 FLASH r1,w0,r0 723.03E-6  (J) 707.46E-6  (J) 

7 FLASH r0 13.2E-6 (J) 12.87E-6 (J) 

 Energy total 2.236E-3 (J) 1.996E-3 (J) 

 Time total 105.2 ms 90.24ms 

 
Table 9 shows the measurement result before and after time interleaving between FLASH 

erase and RF packets sending. A 10.7% energy reduction and a 14.2 % time reduction 

can be achieved according to the measurement result.  

 

4.6 Energy Considerations for RF Testing 
 

Popular wireless communication protocols have been developed to favor battery-powered 

node, such as 804.15.4. These nodes can require duty-cycling to reduce power 

consumption so that most of their operational life is spent in a sleep mode. However, 

each node shall periodically listen to the RF channel in order to determine whether a 

message is pending. This mechanism allows the application designer to decide on the 

trade-off between battery consumption and message latency. Listening to the RF channel 

continuously is an option to avoid message latency that will lead to higher power 

consumption. Table 10 and Figure 23 show the energy consumed by node under different 

wireless node operating modes. 
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Table 10 : Description of Different Wireless Communication Modes 

Mode Operating mode description 

1 Sending 5 packets with max power level 

2 Sending 5 packets with medium power level 

3 Sending 5 packets with min power level 

4 Sleep mode, wait for periodical beacon packet 

5 Always awake, monitoring RF channel continuously 

 

Further, modern wireless protocols incorporate several energy reduction techniques, 

including the use of beacon signals. The testing of WSN nodes is periodically activated 

by the beacon signal, and the NUT is mostly in the sleep mode between beacons. Figure 

23 shows current measurement under the different operating modes of a NUT. Modes 1-3 

are sending test packets at different transmission power levels. Mode 4 is the sleep mode. 

We do not use the beacon scheme in Mode 5. 

 

 
Figure 23: Current Consumption Profile of the Node Testing 
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From the result of Figure 23, it can be concluded that mode 5 is the worst operating mode 

among all the operating modes that have been tested, in terms of minimizing the energy 

consumption. Mode 4 cost the least amount of energy since the CPU and transceiver are 

set to be OFF between two beacons. Modes 1-3 show that energy consumption is 

decreased when we set the lower output power levels.    

 

As mentioned in 3.4.2, we use a linear searching method to sweep transmitter output 

power from a low level to a high level for RF specifications testing. This searching 

algorithm yields a lower energy consumption than any other search algorithms because it 

begins from the lowest power levels. The least energy consumption with required PER is 

achieved for node testing using the linear searching method. Furthermore, we should also 

use the cycling beacon RF communication scheme to activate the node, since the beacon 

scheme guarantees that the node works in sleep mode for most of the time. 

 

4.7   Summary 
 

At the beginning of this chapter, based on the current measurement architecture, some 

new instruction-level software energy optimization methods are proposed for CPU core 

testing. These methods focus on operand selection with least Hamming distance and 

weight and on instruction selection and combination with least power consumption. From 

the current measurements, a 21.2% reduction in software energy consumption for CPU 

core testing is achieved by using the proposed optimization methods. The traditional SBC 

addressing method for energy reduction of memory testing has proved to be inefficient 

for testing on-chip memory according to the current measurements. Time interleaving of 

different test routines has proved to be an efficient system-level energy optimization 

method especially for advanced embedded system with large sizes of embedded FLASH 

memory. We take one segment (512 bytes) of FLASH testing and 10 segments (5kBytes) 

of RAM testing as an example to implement the time interleaving between FLASH 

testing code and RAM testing code. A 13.4% energy reduction and 20.5% time reduction 

are achieved by this interleaving according to current measurement results. The time 
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interleaving is also implemented between FLASH testing and RF tests. A 10.7% energy 

reduction and 14.2 % time reduction are achieved by this interleaving according to 

current measurement results. Finally, we measure the software energy consumption under 

different wireless communication modes and conclude that the beacon transmission 

scheme is the optimal mode of operation with respect to software energy consumption.   
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Chapter 5 ����
Structuring Measurements for Modeling and the 
Deployment of Industrial Wireless Networks 
 
The true convenience of interconnecting devices without the use of wires has lead to the 

unprecedented success of wireless technologies in the computer and consumer electronics 

industry [52]. Various wireless networks are now beginning to appear in industrial 

settings. They promise to reduce the cost and save the time needed for the installation and 

maintenance of industrial control networks. The large number of cables normally 

required in such an environment can be substantially reduced, thus making plant setup 

and reconfiguration easier. For example, a typical commercial building can contain 

hundreds of sensors that are wired to central air conditioning and ventilation systems. 

Replacing wired units with WSN nodes offers more flexibility, and ultimately a better, 

energy efficient installation. Eliminating wiring is especially important in industrial 

environments where chemicals, vibrations, or moving parts can damage any cabling.  

 

Wireless networking technology poses, however, many challenges [53][55], especially in 

guaranteeing the sufficient and reliable coverage during its deployment. Wireless 

networking devices are inherently power-limited, which limits the ability to combat 

communication channel errors. Even without power limitations, phenomena such as 

obstruction and multipath interference on the transmitted signal path make the link 

quality hard to predict and design for. The industrial setting, with numerous pieces of 

metal machinery, racks and moving parts is especially plagued by link obstruction and 

multipath interference. If a transmitter node (TX) is trying to connect to a receiver (RX) 
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located in a typical industry environment full of metal surfaces (as shown in Figure 24), 

there will be many transmission paths, including a direct Line-of-sight (LOS) connection 

path and other multiple-reflection Non-line-of-sight (NLOS) paths. Since each path has 

different delay and attenuation, the received signal is badly affected by those destructive 

interferences. 

nodeTXnodeTXnodeTXnodeRX

nodeTXnodeTX

Metal

LOS

NLOS

NLOS

NLOS

 
Figure 24: The Real Industry Environment. 

 

The performance of deployed wireless networks greatly depends on the details of the 

underlying communication channel [42]. Hence, to evaluate performance of wireless 

networks, an accurate communication model is necessary. Until recently, two major 

approaches have been in widespread use in the sensor network community: unit disk 

modeling and empirical data traces [42]. The unit disc model states that communication 

between two wireless nodes is solely a function of the distance and that communication is 

conducted without any loss of packets if the nodes are closer than a specified 

communication range. However, the complete correlation between the properties of 

geometric space and the topology of the network has been refuted by numerous 

experiments in actual deployments [39]. At the other end of the spectrum are networks 

and communication patterns that are empirical traces of deployed systems. These 

networks are, of course, completely accurate samples of real life wireless 
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communications. However, it is difficult and expensive to create a large number of 

physically large network instances that are properly characterized [42]. 

 

Recently, a statistical model of lossy links for wireless sensor network (WSN) was 

proposed [42] to produce network models of arbitrary sizes with realistic properties. This 

work provides a foundation for extracting the relationship between wireless node 

locations (distance) and communication properties (e.g. Reception Rate -RR) using non-

parametric statistical techniques. The objective is to use a non-parametric method to 

obtain a Probability Density Function (PDF) that completely characterizes the 

relationship between the distance and RR. Based on the study of PDF about properties of 

individual and group links, an iterative improvement-based optimization procedure is 

used to generate network instances that are statistically similar to empirically observed 

network. 

 

The IEEE 802.15.4 standard was finalized in October 2003 with the aim of creating a low 

cost, low power, two-way wireless communication solution that meets the requirements 

of sensors and control devices. In contrast to other wireless protocols such as IEEE 

802.11, IEEE 802.15.4 has been specifically developed for use with applications in which 

a static network exists that has many infrequently used devices that transmit only small 

data packets. Such applications exactly match the needs of many industrial environments. 

The unique properties of wireless links in the 2.4-GHz range (commonly used in IEEE 

802.15.4) are: radio waves can penetrate walls and are reflected by several materials. As 

a result, multiple copies of a signal may travel on several paths with different distances 

from transmitter to receiver. Errors occur not only due to noise, but also due to the 

multipath fading. In addition, distance-dependent path loss and co-/adjacent channel 

interference influence the channel. Hence, the wave propagation environment (number of 

propagation paths, their respective loss) and its time-varying nature (moving people, 

machines or wireless nodes) play a dominant role in constituting channel characteristics.  

 

In this chapter, we present our methodology for conducting measurements for the 

purpose of assisting in their seamless deployment. We apply this methodology to the 
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IEEE 802.15.4 wireless protocol. The chosen measurement scenario shares some 

common characteristics of industry environments: many metal surfaces, moving parts, 

and machines switching on and off. A targeted set of measurements about the physical 

and communication properties of WSN are presented. The measurement results can be 

used to set up experimental models for WSN [42] or to evaluate the performance of 

wireless networks prior to their deployment to a particular site. Based on the 

measurement results, we provide the foundation for analyzing the influence of these 

features to the WSN performance and validate their suitability for the actual deployment.  

 

5.1  Measurement Methodology  
 

It is beneficial to parameterize the current wireless link models from “real data”, obtained 

from measurements, or to use the measurement results as a motivation for developing 

better models. For the deployment of wireless network, some network features 

measurements in real application environment can be used to evaluate the performance of 

targeted wireless networks and give a guideline for user to make the decision. The 

measurement setup is described next. 

 

Table 11 : Wireless Network Testing Features 

Testing features (Mi) Testing configuration (Ci) 

Transmit Power 

level 

8 output power levels ranging from 0dBm to -25dBm 

Frequency Ranges from 2.405GHz to 2.48GHz, 16 channels in total, 

monitors frequency interference in different channels 

Packet size 20, 50 and 100 bytes per packet 

Antenna polarization 0, 45, 90 degree between transmitter and receiver antenna 

Antenna height 0, 50cm height to the ground 

Asymmetry Detect the difference of transmission direction of A->B and B->A 

Temporal Monitor the relationship of RR and distance during different time 
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To delve into the wireless communication characteristics, we develop a series of 

measurements to build the statistical relationships with respect to the features that impact 

network architecture and protocols in real networks. Our task is to analyze the 

relationship between two main properties of wireless network under some features about 

common transmitter, receiver and geometrical location. The details about the test features 

shown in Table 11 are explained as follows: 

 

Transmit power levels: 

One of the fundamental issues that arise naturally in sensor network is the coverage. In 

radio communications, coverage means the geographical area within which service from 

a radio communications facility can be received. Energy is another key concern with 

wireless networks. The proposed power level measurement will try to consider the 

coverage and power issues at the same time. 

 

Frequency:  

In the future, it will be standard for multiple wireless technologies to be used in a single 

environment. This is general not a problem unless the technologies are placed in the same 

frequency band. For the protocols at the same band, it is necessary to investigate the 

performance of coexisting networks and to find methods for reducing mutual disturbance 

between them. The associated interference between IEEE 802.15.4 and IEEE 802.11 is 

quantitatively assessed here. 

 

Packet size: 

The network performance measurements with different packet sizes are used to 

quantitively mention the influence of some protocol design to the wireless 

communication performance. 

 

Antenna features: 

As mentioned before, low power consumption is critical for the application of WSNs. 

The proper location of WSN node and the orientation with respect to the antenna 



   
Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks   

  70

directionality can help to reach better coverage, as well as reduce the power consumption 

of node. 

 

Asymmetry and Time-variable characteristics: 

The measurements presented here try to answer the following questions: Is there an 

asymmetry in WSN links? Does the temporal variable cause the change of wireless 

communication?    

 

The above measurements are implemented by a pair of WSN nodes; one is a transmitter 

and the other is a receiver. The network measurement architecture is shown in Figure 25.  

ReceiverTransmitter
�

 
Figure 25: Wireless Network Measurement Architecture 

The pseudo-code for transmitter and receiver are shown as follows: 

Transmitter: 

 

 

 

 

 

 

 

Receiver: 
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Figure 26: Wireless Network Testing Sequence Chart 

 

Figure 26 shows the sequence chart of the code to test the relationship among RR, 

distance and output power levels. The testing code for other features has a similar 

program sequence.  

 

5.2   Understanding Measurement Results 
 

Our testing is implemented in two kinds of environments: the laboratory (indoors) and 

the campus (outdoors). The typical indoors environment includes the furniture (mental or 

wood), walls, electronic equipments, e.g. printers, microwave oven. The WSN node is 

built with low power microcontroller MSP430 from TI; Zigbee compliant RF transceiver 

CC2420 from Chipcon [44] and our own printed antenna. A pair of nodes with the same 

hardware is placed at the increasing distances (say, 5m, 10m, 15m, and 20m) with or 

without line-of-sight between them. The outdoor environment includes trees and 
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buildings. The pair of nodes are placed at the distances (such as 10m, 20m, 40m and 60m) 

and at different height, such as near the ground or elevated off the ground. The indoors 

and outdoors testing environments are zones covered by the McGill wireless signal 

(802.11.b). At each test position, 10,000 test packets are transmitted for packet RR testing. 

In summary, the data set used in our testing consisted of packet delivery data for more 

than 2 million packets in experiments performed in 2 different environments, 8 different 

output power settings, 3 different working channels, 3 different packet sizes, 3 kinds of 

antenna polarization, 2 different antenna heights, two transmission directions for 

asymmetry and 10 different time points.  

 

5.2.1 Power levels 
 

Power level is an important characteristic of a wireless network node for power 

optimisation techniques. Here, the measurements are used to consider the tradeoffs 

between the coverage and energy consumption. For the employed Chipcon CC2420 RF 

transceiver [44], there are 8 programmable output power levels in total. Figure 27 shows 

the relationship between output power and current consumption under different power 

levels. We test the relationship between RR and distance under each output power level.  

 

Table 12 : Output power under different power levels 

Power level Output Power (dBm) Current Consumption (mA) 

8 0 17.4 

7 -1 16.5 

6 -3 15.2 

5 -5 13.9 

4 -7 12.5 

3 -10 11.2 

2 -15 9.9 

1 -25 8.5 
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Figure 27 shows the 3-D graph of the measured relationship between distances, power 

level and RR in outdoor environment. From this graph we can see that for a fixed power 

level, RR decreases as the distance is increased. For a fixed distance, RR decreases as the 

power level is decreased. At the highest output power level, the communication range can 

reach to 60m with the required packet RR. This testing can be used to optimize the power 

consumption of the wireless node. With compliance to the required RR and distance, the 

output power of the CC2420 should be set as low as possible. 
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Figure 27: The Relationship between RR and Distance under Different Power Levels.  

 

5.2.2 Asymmetry 
 

Asymmetry in communication refers to the difference in RR of packets communicated 

strictly between two nodes. Two cases are possible for nodes A and B- first, the 

transmitter is A and the receiver is B; second, the transmitter is B and receiver is A. 

When the difference is beyond 50%, asymmetry is considered to be happening [42]. Very 

often, it is assumed that RR is the same in both directions. We design the tests to capture 

whether there is an asymmetry in the RR (as a function of the node distance). 
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Figure 28: Dependency on Asymmetric RR to Distance 

 

Figure 28 shows the dependency of asymmetric RR as a function of distance in outdoors 

environment. From the result shown in Figure 28, we can see there is big difference (44%) 

when the distance is very long (60m).  By the definition of asymmetry (50% difference), 

it may not be consider as asymmetry. The possible reason for the big difference could be 

the minor circuit differences between A and B.  

 

5.2.3 Temporal Variability  
 

The goal of this measurement is trying to find the influence of the measurement time to 

the communication link performance (RR). Figure 29 shows the temporal variability of 

the relationship between RR and distance in indoor environment. The test is taken from 

11AM to 9PM at two hours intervals. There is no obvious trend shown in the graph. 

There is only a minor difference (all from 97% to 100%) in the RR. The possible reason 

is the interference (e.g. machinery, microwave owens, etc.) applied randomly over time. 

We observe that time is not an important factor influencing the relationship between RR 

and distance. 
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Figure 29: The Relationship of Distance and RR at Different Times 

 

5.2.4 Interference from other wireless networks 
 

Multiple wireless standards can use the same frequency band. The 2.4GHz ISM band is 

used for both IEEE 802.15.4 and IEEE 802.11 standards. The next measurement is 

designed to give the quantitive assessment about the interference between different 

wireless networks. 

 

For the 802.15.4 networks [45], there are totally 16 channels (channel 11 to channel 

26)and they are located within the range from the 2.405GHz to 2.48GHz at an interval of 

5MHz. The measurement tries to capture the influence of different frequency to 

communication performance. Since the printed antenna is narrowband and designed to 

tune to Channel 11 (2.405GHz), channel 11 is expect to be the strongest channel with the 

highest RR compare to other channels. Figure 30 shows the relationship between RR and 

distance for three different channels (channel 11, 26 and 17) indoors. 
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Figure 30: The Relationship between RR and Distance over Three Different Channels. 

 

From the measurement result, we can see the RR of channel 17 is much lower than 

channel 11 and channel 26. The RR of channel 11 is better than channel 26. The reasons 

for these observations are explained as following:   

 

1. Using a spectrum analyzer, we can see that there is a wide range of interference within 

the frequency band ranges from 2.43GHz to 2.45GHz. The strongest interference is 

caused by the 802.11.b wireless internet access (both indoor and outdoor environments).  

 

2. The printed antenna is tuned to channel 11; therefore the antenna performance is best 

for this channel. That explains that the RR in channel 11 is higher than RR in channel 26 

at each distance, even though there is no wireless interference in both channel 26 and 

channel 11. 

 

5.2.5 Packet size 
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This measurement is used to detect the dependency of the transmission packet size to the 

RR and distance. Figure 31 shows the relationship between RR and distance for three 

packet sizes (20 bytes, 50 bytes and 100 bytes) in an indoor environment.   
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Figure 31: The Relationship between RR and Distance for Different Packet Sizes 

 

From Figure 31, we can see that when the distance is short, the minimum packets size (20 

bytes) corresponds to the best RR. When the distance is long, that tendency is not present. 

From the test result, there is no obvious regularity for different packet sizes. We can 

conclude that packet size is not one of the important factors affecting communication 

properties. 

 

5.2.6 Antenna Features 
 

Antenna is a critical component of wireless node and its design plays an important role 

for the whole wireless network performance. Here, we present the measurement for two 

kinds of features of the antenna. One is the antenna polarization and the other is the 

antenna height above the ground. The measurement results can provide a guideline for 

refining the antenna design. 
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Figure 32: Dependency of Antenna Polarization to RR and Distance 

 

Figure 32 shows the dependency of RR and antenna polarization at two distances (10m 

and 60m) in outdoor environment. There are 3 antenna polarization tested in Figure 32: 0 

degree (the antennas of transmitter and receiver are parallel), 45 degree (45 degree angle 

between antennas of transmitter and receiver) and 90 degree (the antennas of transmitter 

and receiver are perpendicular). From the results shown in Figure 32, the RR is highest 

when the antennas are parallel (0 degree) and the lowest RR happened when the antennas 

are vertical (90 degree). This result provides a guideline for the node location of wireless 

network. The antennas of the nodes in the real wireless network should be a parallel set. 

Also we can see from Figure 32, the effect of antenna polarization at short distance (10m) 

is not as strong as at long distance (60m). The possible reason is that when distance is 

long, the transmission signal is weak and easily affected by antenna polarization. 
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Figure 33: The Relationship between RR and Distance from the Antenna to the 

Ground. 

 

Figure 33 shows the relationship between the RR and distance at two antenna heights in 

outdoor environment. We set two test conditions: putting the wireless node on ground 

and at a height of 50cm to ground. Based on the testing presented above, we can see that 

the antenna design and its placement are important factors for the system performance. 

 

5.3 Facilitating Deployment and Model Building 
 

Parts of our measurements results such as the relationship between distance and RR, 

asymmetry and temporal variation can be used to help building statistical models for 

WSN [42]. The collected data can be used as original data to calculate the probability 

density function (PDF) that establish a complete characterization of the relationship 

among network features. The PDF provides the likelihood that any particular value of one 

feature is associated with a given value of another feature. Based on the PDF of realistic 

network features, a series of wireless network generators are developed to produce 
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networks of an arbitrary size. The generated instances of the network are statistically 

similar to the empirically observed networks.  

 

Coverage is a key parameter to evaluate the wireless networks. The coverage of IEEE 

802.15.4 can be easily obtained from our power levels measurement. Channels 

measurement shows the interference from coexisted wireless networks in the real 

industrial application. Both antenna polarization and antenna height shows that proper 

node location will increase the coverage as well as decrease the power consumption. 

Power and coverage are all key concerns to the deployment of wireless networks.  

 

5.4  Summary 
 

In this chapter, we have developed a methodology for measuring a set of network 

features for characterizing links in wireless network communication. Our measurements 

can help building communication link models for an arbitrary network that is statistically 

similar to observed networks. These measurements also greatly impact the power 

management techniques and WSN node location and configuration. For example, the 

antenna polarization and height should be considered during node placement. With 

required packet RR and distance, the output power levels can be configured as low as 

possible to reduce the node energy consumption with required coverage. The insight 

gained while building these relationships gives a guideline for developers of protocols, 

localized algorithms and antenna design for wireless networks and the users of wireless 

products. 
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Chapter 6 

 

Conclusions and Future Work 
 
In this thesis, we detail out a comprehensive system-level low-power SBST method tuned 

for wireless nodes. Individual testing of the main node components, as well as the 

combined testing across component boundaries are all considered for power optimization. 

The flexible low-cost and low-power test scheme is primarily aimed at in-field testing, 

but can be applied to manufacturing test as well. For CPU SBST, instructions with fewest 

cycles and operands with least Hamming distance and weight are selected via a dynamic 

programming approach. The CPU testing energy reduction of 21.2% is observed by 

current measurement on a prototype node. March FT algorithms used to test the 

embedded FLASH are similarly passed through the instruction and operand selection 

algorithm, as well as the address bus power optimization method. Time interleaving of 

the embedded FLASH test and other components’ test routines is a major system-level 

technique used to reduce the energy consumption as well as the test time. The new 

scheme for characterization and test of the complete RF module is devised.  In addition to 

the above energy reduction techniques, RF module test can benefit from the transmit 

energy optimization and the use of low-power modes native to modern protocols. In the 

last chapter, we provided a significant amount of data from wireless network 

performance testing that can be efficiently utilized to build statistical models for protocol, 

algorithm and hardware design of WSN.  

 

In chapter 5, we use only two WSN nodes to measure the relationship between the 

distance and the reception rate under different configurations (individual link properties). 
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The measurement results can be affected by the specific hardware features of the two 

nodes. Some network performance such as asymmetry may not be detected because of 

the shortage of collected data; thus, to get better statistical measurement, a real WSN with 

more nodes (around 10 nodes) are necessary to delve the group link properties. Group 

link properties are joint properties of subsets of links that are related to each other in a 

particular way. They include properties of the links that originate from the same 

transmitter or received by the same receiver, processed by the same radio, or 

communicated by nodes that are geometrically close. These properties answer some 

fundamental questions about reasons for particular behavior of communication patterns. 

For example, these questions include the hypothesis that the performance of a particular 

node as a transmitter mainly depends on the quality of its radio or its geometric position. 

 

During the SBST of a RF module, each WSN node can work as a NUT or an interference 

node. At the normal operation of WSN, the test initialization can be broadcast (or 

multicast to selected sensor areas) by a TMN using any available broadcast/multicast 

mechanism in WSNs; then, the SBST of each node can be parallelized. Therefore, a 

TMN need a test management mechanism to organize the SBST of each node and to 

choose the interference source according to the proper distance from the interference 

node to the NUT.  
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