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Abstract—Deep learning-based algorithms have been very suc-
cessful in skeleton-based human activity recognition. Skeleton
data contains 2-D or 3-D coordinates of human body joints.
The main focus of most of the existing skeleton-based activity
recognition methods is on designing new deep architectures to
learn discriminative features, where all body joints are consid-
ered equally important in recognition. However, the importance
of joints varies as an activity proceeds within a video and across
different activities. In this work, we hypothesize that selecting
relevant joints, prior to recognition, can enhance performance of
the existing deep learning-based recognition models. We propose
a spatial hard attention finding method that aims to remove the
uninformative and/or misleading joints at each frame. We formu-
late the joint selection problem as a Markov decision process and
employ deep reinforcement learning to train the proposed spatial-
attention-aware agent. No extra labels are needed for the agent’s
training. The agent takes a sequence of features extracted from
skeleton video as input and outputs a sequence of probabilities
for joints. The proposed method can be considered as a general
framework that can be integrated with the existing skeleton-based
activity recognition methods for performance improvement pur-
poses. We obtain very competitive activity recognition results on
three commonly used human activity recognition datasets.

Index Terms—Activity recognition, deep reinforcement learn-
ing (DRL), skeleton data, spatial attention.

I. INTRODUCTION

IN THE field of computer vision, activity recognition is a
very practical, yet challenging task which plays a signifi-

cant role in video understanding. Despite decades of study,
activity recognition remains extremely popular because of
its vast potential applications, e.g., human–robot interaction,
monitoring indoor and outdoor activities, video surveillance,
and sports analysis [6], [7], [15], [46]. Many attempts have
been made to recognize human activity from skeleton data
or RGB video images. Skeleton data is a data modality that
contains two-dimensional (2-D) or three-dimensional (3-D)
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Fig. 1. Different joint subsets (shown in red circles) are involved in different
stages of activity “pick up.”

coordinates of body joints (i.e., head, neck, . . . , foot). Despite
RGB video-based activity recognition methods, which mainly
focus on the appearance information, skeleton-based methods
are robust against background clutter, illumination changes,
appearance variation, etc. It has been shown that an activ-
ity can be effectively recognized by tracking the skeleton
joints locations across video, without any need to the RGB
information [1]. Nowadays skeletal data are easily acces-
sible thanks to the prevalence of depth cameras, such as
Microsoft Kinect, and reliable performance of the existing
human pose estimation algorithms [38], [48], [54], [57], [62].
Hence, skeleton-based activity recognition has gained increas-
ing attention [17], [41], [52], [55], [58]. This article focuses
on human activity recognition using skeleton data.

Not all human joints are equally important for activity
recognition. As examples, consider two activities “throw” and
“kick.” In activity “throw,” the articulated configurations of
upper body joints are important, while lower body joints play
more role in activity “kick.” In addition, the key joints may
vary over time as an activity proceeds. The variation of key
joints across video frames is illustrated in Fig. 1.

Most of the skeleton-based activity recognition methods
assume equal importance for all of the body joints and pay
little attention to the fact that, indeed, monitoring of some of
the body joints is not essential and even could mislead the
recognition process.

We hypothesize that the irrelevant joints across frame/video
bring noise and degrade recognition performance; hence,
the irrelevant joints should be discarded by hard attention.
Motivated by this, we propose a spatial-attention-aware selec-
tion agent to continuously identify discriminative joints and

2168-2216 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: McGill University. Downloaded on March 20,2023 at 14:34:47 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7568-1811
https://orcid.org/0000-0002-5880-906X


2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

discard the irrelevant ones. The agent takes a sequence of
features, extracted from the skeleton video, as input and out-
puts a sequence of probabilities for joins. Since the hard
attention model is nondifferentiable, it cannot be trained in
an end-to-end manner [21], [58]. As such, we employ deep
reinforcement learning (DRL) to train the spatial-attention-
aware agent. Our method has the following benefits: First,
the proposed method needs no extra labels denoting irrelevant
joints (per frame/video); i.e., only video-level activity labels
are required. The agent training process is supervised by a
reward generated by a baseline recognition model. Second, the
proposed agent is compatible with most of the existing activ-
ity recognition models (to be used as the baseline model) and
can boost their performance effectively. Third, the proposed
agent selects a distinct “optimal”1 subset of key joints for each
video frame. The selected subset of joints may differ both in
size and membership across frames. This allows to incorpo-
rate in recognition the fact that the important joints may vary
across different stages of an activity. Fourth, a trained spatial-
attention-aware agent can be used as a preprocessing block,
for a recognition model, that filters out irrelevant joints before
recognition. Such integration can significantly speed up the
training phase of the recognition model since the irrelevant
joints are not involved in the recognition model training. The
main contributions of our article are listed.

1) We discover the novel problem of finding spatial hard
attentions in skeleton video for human activity recogni-
tion, using deep learning.

2) To address this problem, we propose a spatial-attention-
aware agent that keeps relevant joints and discards
irrelevant ones. The agent is trained by DRL.

3) We performed experiments on three widely used bench-
mark activity recognition datasets to show the effective-
ness of our proposed method and achieve competitive
results.

Across this article, we refer to the proposed method as
SHARL, which stands for Spatial Hard Attention finding using
deep RL. To the best of our knowledge, this is the first study
that devises a deep learning-based framework for spatial hard
attention finding in skeleton video.

An early version of this article is appeared in [71]. The
remainder of this article is organized as follows. Section II dis-
cusses the related works to our method. Section III introduces
the proposed SHARL method. The experiments are presented
in Section IV. We draw the conclusion in Section V.

II. RELATED WORKS

A. Deep Learning-Based Activity Recognition With
Skeleton Data

Extensive research has been carried out on creating appro-
priate representations for human activity recognition. Great
success of deep learning in object recognition [8] motivated

1Following the literature in the optimization field [5], we refer to the solu-
tion of our optimization problem as the optimal solution. We acknowledge
that this may not be the true optimal solution as the optimization problem is
nonconvex, and we can only find a local minimum point for the employed
objective function, similar to other SOTA methods in the deep learning
context.

researchers to use it in human activity recognition [32] to find
effective representations. In the literature, deep learning-based
methods for skeleton-based activity recognition are mainly
grouped into three categories: methods based on 1) recur-
rent neural networks (RNNs); 2) convolutional neural networks
(CNNs); and 3) graph-based networks [67].

RNN has proved to perform well in video analysis due to
it is capability in modeling sequential data [23], [36]. A two-
stream RNN-based model is proposed in [42] which captures
spatial and temporal information. An end-to-end approach
using hierarchical RNN is suggested in [18] where the body
skeleton is first divided into five parts. Then, it feeds each of
the parts to an individual subnet as input. In [27], a part-aware
long short-term memory (LSTM)-based method is presented
that considers each body part separately. Zhu et al. [30]
employed a deep LSTM network along with a regularization
technique for learning the co-occurrence of skeleton joints.
In [34], the skeleton joints are first transformed to a new coor-
dinate system robust to translation, scale, and rotation; then a
temporal sliding LSTM, including short-term, medium-term,
and long-term components are applied. An average ensem-
ble of these components is then used to find proper temporal
features. Song et al. [41] presented an LSTM-based network
to learn discriminative temporal and spatial information for
activity recognition.

For CNN-based models, in order to satisfy the requirement
for image data, joint coordinates are usually considered as
pseudo-images so that convolution kernels can be applied to
them. Du et al. [17] proposed to combine the joint positions
and joint velocities, and used a two-stream CNN architecture;
however, the long-term frame dependency is neglected. To
overcome this drawback, Ke et al. [33] proposed to generate
some clips out of videos that preserve temporal information
and then feed them to a CNN-based network. In [37], a view-
invariant recognition model is presented that finds an improved
visualization of skeleton data and uses CNN as the classifier.
In [49], co-occurrence features are found with a hierarchi-
cal framework which is effective for multisubject activities.
Banerjee et al. [64] presented four representations, with com-
plementary characteristics, for skeleton data and employed
four complementary CNNs and a fuzzy fusion technique to
combine their outputs and make the final decision.

Considering hinged joints and bones, the skeleton of
human body can be modeled as a graph with nodes and
vertices. There have been several successful graph-based meth-
ods proposed in the literature, leading this to a growing
trend in the field [69]. A spatial-temporal graph convolu-
tional network (GCN) is presented in [55], consisting of
several spatial-temporal graph convolutions for extracting fea-
tures of body skeleton. In [61], an attention-enhanced graph
convolutional LSTM (AGC-LSTM) is employed for skeleton-
based activity recognition. Shi et al. modeled and updated
bones and joints employing directed graphs in [60]; The
method is called directed graph neural network (DGNN).
Cheng et al. [65] designed a decoupling GCN (DCGCN)
to increase the ability of graph modeling for skeleton-based
activity recognition, without adding extra computational costs.
Shi et al. [68] proposed decoupled spatial-temporal attention
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Fig. 2. Overall architecture of the proposed SHARL method. st
j is state of the jth joint in frame t of the input video and aj is its corresponding action taken

by the agent.

network to model spatial and temporal information, where
both interframe and intraframe relationships between joints are
considered.

All the skeleton-based activity recognition methods dis-
cussed above focus on designing novel deep architectures to
learn discriminative spatial/temporal features. None of them
are capable of being employed as a filtering block, to dis-
card irrelevant joints, prior to the existing sophisticated deep
learning-based skeleton-based recognition models. In this arti-
cle, we approach this issue by proposing a novel spatial hard
attention finding agent (filter) that discards the irrelevant joints
and preserves the key ones, prior to the activity recognition in
the testing phase.

B. Human Activity Recognition Using Reinforcement
Learning

Reinforcement learning (RL) algorithms learn how to
accomplish a complex objective by interacting with the envi-
ronment, similar to the way human learns to act optimally
in various environments [51]. In every RL algorithm, there
exists an agent that explores the environment, which is usu-
ally expressed as a Markov decision process (MDP). The
agent receives reward aligned with the agent’s final goal(s),
where the goal is to maximize an expected reward. DRL is
an RL-based technique that employs deep neural networks to
deal with high dimensional action/state spaces [31], [35], [47].
Deep RL has been a very successful technique and could
achieve human-level performance in, e.g., Atari games [12],
[20], [39], [59].

There are several studies in computer vision field where deep
RL is used as the tool to solve problems, such as visual track-
ing [44], video captioning [53], action detection [29], person
identification [25], and face recognition [40]. Moreover, [66]
proposes a gesture recognition method using RL. However,
there are few RL-based works for activity recognition, espe-
cially for skeleton data. Zhou et al. [56] developed an RL-based
framework for selecting key frames in long RGB videos to sum-
marize them. Chen et al. [45] proposed an activity recognition
method, for RGB videos, that extracts features from differ-
ent human body parts under a DRL framework. To find the
most important frames in videos, multiagent RL is employed
in [63], where each agent selects one frame at a time. An

LSTM-based method developed by Dong et al. is presented
in [58] which retrieves relevant frames based on RL. Both [58],
[63] are designed for RGB video data. To the best of our knowl-
edge, DPRL [52] is the only previous study that uses DRL
for skeleton-based activity recognition. This method improves
recognition performance by selecting key frames (i.e., finding
hard temporal attentions) in skeleton videos, employing graph
representation for the skeleton data, and a graph-based CNN
for generating the required reward. Xu et al. [70] proposed a
feature selection network (FSN) with actor-critic RL to select
the most descriptive frames and discard ambiguous frames in a
sequence. The features extracted for each frame of the skeleton
sequence are generated by a generalized GCN (GGCN). The
FSN contains a policy network and a value network which
are actor and critic, respectively. Both networks are based on
LSTM. In [72], an overview of using DRL techniques in the
field of human activity recognition is presented. This article
reviews some important deep RL methods and various aspects
of deep RL-based human activity recognition techniques. It also
covers different approaches for training and evaluating these
models, along with their advantages and limitations. Interested
readers may refer to this literature for deeper understanding of
the field.

III. PROPOSED METHOD

Not all joints in a video are helpful for activity recognition.
So it is necessary to identify and discard irrelevant joints to
avoid the adverse effect of them. In the following, the proposed
deep RL-based algorithm for finding spatial hard attentions,
SHARL, is discussed.

A. Spatial-Attention-Aware Selection

The proposed SHARL method models the process of seek-
ing the most discriminative joints as an MDP and solves it with
the popular policy-based RL algorithm, Monte Carlo policy
gradient (REINFORCE) [3]. Fig. 2 shows the overall archi-
tecture of SHARL. There is an agent in its current state of
environment. The agent interacts with the environment through
taking actions2 that result in changing its state and receiving

2Two types of actions are used in this article: 1) the actions that should be
recognized and 2) the actions in the RL framework. To avoid confusion, we
use the bold-sized word to define the agent’s actions in the RL framework.
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reward. The agent learns to select discriminative joints, i.e.,
find spatial hard attentions, by maximizing the total expected
reward.

In this article, the kth RL episode is denoted by Tk =
(Sk, Ak, Rk), where Sk, Ak, and Rk are state, action, and reward
at the kth episode, respectively. At each episode, the agent goes
over all the T frames of a given video once, which means
we have a single-step MDP. We defined single-step MDP to
avoid the problem of delayed reward, which will be obtained
only when the final set of selected joints are available [51].
One-step MDP is common in RL and policy gradient the-
orem can be proved for it. Moreover, as the input state of
the agent in each frame of the video is different, the output
of the agent can vary over frames of a single video and the
whole resultant video is used to get the reward. We run the
agent on the same video for K episodes; the set of episodes
is denoted as T = (S1, A1, R1, . . . , SK, AK, RK). Agent, state,
action, and reward in the proposed RL-based selection process
are as follows.

Agent: Any deep learning-based architecture (e.g., CNN-
based, RNN-based, graph-based, etc.) can be used as the policy
network. We can consider the human skeleton as an ordered
sequence of J joints, where coordinate and motion of one joint
may affect those of others. Bi-directional LSTM (BiLSTM)
has shown its effectiveness when dealing with sequential data.
Hence, as the agent, we use a BiLSTM-based network topped
with a fully connected (FC) layer. At frame t of episode Tk,
the BiLSTM network gets the state St

k, defined below, as input
and then feeds its output to the FC layer. The output of the
agent is the probability vector {pt

j}J
j=1, which defines actions

later.
State: Previous studies have shown that considering joints’

motion, as well as their location, improves the activity recog-
nition performance [61]. Therefore, we define the agent state
at the t-th frame of Tk as St

k = {st
j}J

j=1 where st
j = [st

j,c, st
j,m];

st
j,c is the 3-D coordinate of joint j and st

j,m is its correspond-

ing 3-D motion vector, i.e., st
j,m = st

j,c − st−1
j,c . The state set at

the kth episode is Sk = {St
k}T

t=1.
Action: The action is selection of a joint. We define two

actions as “keep” and “remove.” The output of the FC layer
of the agent at frame t, {pt

j}J
j=1, denotes the probability of

taking action “keep.” Consider action set Ak = {at
k}T

t=1 where
at

k is a J-dim indicator vector which shows the selected joints
at frame t of the kth episode. If the jth element of at

k, i.e., at
k,j

is 1, the jth joint is kept in frame t; otherwise it is removed.
pt

j indicates probability of setting at
k,j to 1. All the J elements

of at
k are sampled from Bernoulli distributions as follows:

at
k =

{
at

k,j ∼ Bernoulli
(

pt
j

)}J

j=1
. (1)

The joint selection process of the SHARL agent for a typical
episode is depicted in Fig. 3.

Reward: The reward demonstrates the effectiveness of the
agent’s action, regarding the state. In our method, the reward is
generated using a pretrained baseline recognition model which
receives the T frames with the selected joints as input, where
the selected joints are defined via actions that agent takes. We
impose a strong punishment −�, if the class label predicted

Fig. 3. Selection process for a typical episode with one step. The action
arrows “k” and “r” mean the corresponding joints should be kept or removed,
respectively.

by the baseline model changes from the correct label to a
wrong one. If the turning goes otherwise, a strong reward of
� is enforced. A reward value of r0 is provided if no change is
observed in the predicted class label, but the confidence of the
baseline model toward predicting the correct class changes. r0
is defined as follows:

r0 = sgn
(

Pk
l − Pk−1

l

)
(2)

where Pk
l is the probability of correctly classifying the video

as class l in Tk. The Reward at Tk, i.e., Rk is shown as follows:

Rk =
⎧
⎨
⎩

�, if reward
−�, if punishment
r0, otherwise.

(3)

B. Training With REINFORCE

The goal of our spatial-attention-aware agent is to learn
a policy function by maximizing the expected reward R(θ)

shown below

R(θ) = E
pθ

(
a1:T

k,1:J

)[Rk] (4)

where pθ (a1:T
k,1:J) is the probability distribution of the possi-

ble actions over the frames. We employ REINFORCE [3]
to maximize the expected reward and find the corresponding
optimal parameters θ .

REINFORCE is a well-known policy gradient approach,
where the Monte Carlo strategy is employed such that a tra-
jectory is sampled and the cumulative reward in every step of
the trajectory is calculated. After that, the policy is updated
based on the obtained rewards and this process is repeated
until the optimal policy is found. The policy is approximated
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by a function parameterized by θ . The gradient of the expected
reward in REINFORCE can be shown as follows:

∇θJ(θ) = Eπ [Rt∇θ ln πθ (at|st)]. (5)

Following the above equation, we compute the gradient of
the expected reward, in the kth episode, with respect to the
parameters θ as below

∇θR(θ) = E
pθ

(
a1:T

k,1:J

)
⎡
⎣Rk

T∑
t=1

J∑
j=1

∇θ ln πθ

(
at

k,j|st
k,j

)
⎤
⎦ (6)

where πθ is the policy function, and st
k,j is st

j at the kth episode.
As discussed before, we run the agent for K episodes on
each input skeleton video. Hence, we use the average gradient
shown in (7) when training the agent

∇θR(θ) ≈ 1

KT

K∑
k=1

⎡
⎣Rk

T∑
t=1

J∑
j=1

∇θ ln πθ

(
at

k,j|st
k,j

)
⎤
⎦. (7)

To reduce variance in training θ and to improve conver-
gence, we normalize the reward by subtracting a constant
baseline b, where b is the average reward of episodes.
Therefore, the gradient becomes

∇θR(θ) ≈ 1

KT

K∑
k=1

⎡
⎣(Rk − b)

T∑
t=1

J∑
j=1

∇θ ln πθ

(
at

k,j|st
k,j

)
⎤
⎦.

(8)

We consider some more terms in our objective function,
besides maximizing the expected reward R(θ). We would
like to limit the maximum number of selected joints to a
user-settable value N, where N is an integer value between
1 and J; this can be realized by considering 1Tp ≤ N as a
constraint of the optimization problem. In addition, we would
like to encourage the agent to keep at least one joint per
frame; this can be realized by considering 1Tp ≥ 1 as a con-
straint of the optimization problem. In this article, to be able
to solve the optimization problem using stochastic gradient
descent, the effect of these two additional constraints are con-
sidered, respectively, in the second and third terms of the final
objective function shown below

min
θ

−R(θ) + α × (
1Tp − N

) − β × (
1Tp

)
(9)

where p denotes the average probability of action vectors over
the T frames, and α and β are two hyper-parameters to control
contribution of their corresponding terms.

C. Retraining Baseline

Although we can use a pretrained baseline model with
frozen parameters for the reward generation and video clas-
sification, the performance of the baseline can further be
improved if we fine-tune its parameters considering the
selected joints. We frequently update the baseline model
parameters when training the proposed spatial-attention-aware
agent. The update interval u changes during the training phase
according to the agent’s expertise. More specifically, at the
beginning, as the agent is still unskilled, the baseline is updated

Algorithm 1 Proposed SHARL Method
Input: The video sequences with labels, epochs, K
Output: Trained spatial-attention-aware agent

1: Initialization: pre-train the baseline model, randomly initialize
the agent network, count = 0, buffer = [], u = number of epochs

2
2: for epochs do
3: count += 1
4: for videos do
5: for K episodes do
6: run the policy network
7: find the action using (1)
8: take the action and update the state
9: compute reward using (2) and (3)

10: end for
11: compute the average reward
12: compute the loss (9)
13: update the agent network parameters
14: update the buffer
15: if count = u then
16: retrain the baseline model using the buffer
17: count = 0
18: u = ⌈ u

2

⌉
19: end if
20: end for
21: end for

after a relatively long interval, i.e., after passing over half of
the epochs; the update interval is then decreased with factor 2.
A buffer, with size s, is used for baseline updating which is
filled with the latest s video outputs of agent, i.e., the latest
s videos with selected joints. The baseline model is updated
every u epochs using the videos stored in the buffer. Our exper-
iments show that employing such a buffer makes the baseline
retraining phase faster and more efficient.

Pseudo-code of SHARL is presented in Algorithm 1. In
brief, the baseline model is first pretrained by the original
training data (with full set of joints). A sequence of video is
then given to the agent, K episodes are completed, joints are
selected, and the policy network is updated. We repeat this
process for u epochs, and then retrain the classifier using the
videos (with subset of selected joints) stored in the buffer. The
procedure is repeated for all epochs.

IV. EXPERIMENTAL RESULTS

To analyze the performance of our proposed SHARL
method, we conducted experiments on three benchmark
activity recognition datasets. Effectiveness of the proposed
spatial-attention-aware agent in improving the baseline model
performance is demonstrated on four different models, selected
from all the three activity recognition model categories dis-
cussed in Section II-A, ranging from simple baselines (i.e.,
CNN- and LSTM-based models) to the recent advanced
graph-based models (i.e., DGNN [60] and DCGCN [65]).
The recognition performance of SHARL (with DGNN as
baseline) is compared to several state-of-the-art methods on
skeleton-based activity recognition. This section is organized
as follows. Datasets description is presented in Section IV-A.
The employed network architectures and hyperparameters in
SHARL are presented in Section IV-B. Description of the
baseline models and the SHARL performance with different
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baselines are presented in Section IV-C. In Section IV-D, we
compare the performance of SHARL with several state-of-
the-art skeleton-based recognition methods. The learned hard
attention is visualized in Section IV-E. Analysis of SHARL
convergence, the effect of hyperparameters α and β, and sen-
sitivity of the algorithm to hyperparameter N are discussed
in Sections IV-F, IV-G, and IV-H, respectively. In the end,
in Section IV-I, the effect of SHARL on training run time is
investigated.

A. Datasets

NTU+RGBD Dataset (NTU): Having 56 880 sequences and
4 million frames, NTU is currently the largest available dataset
for activity recognition [27]. The video samples were captured
from 40 different human subjects and belonged to 60 differ-
ent activity classes. For train/test partitioning, NTU has two
settings: 1) cross-subject (CS) and 2) cross-view (CV). In the
CS setting, 40 320 samples captured from 20 subjects are con-
sidered as training samples and the other 16 540 samples are
used as test samples. In the CV setting, 37 920 samples of
camera views 2 and 3 are included in the training set and the
remaining samples that are captured by the other camera, i.e.,
camera 1, is used as the test set. There are either one or two
persons in each video, and the information on the 25 joints is
recorded for each person.

SBU Kinect Interaction Dataset (SBU): It includes
230 sequences of 6614 frames [10]. The samples belong to
eight classes and all the labels are two-person interactive activ-
ities. The data has a fivefold cross-validation setting. The
number of skeleton joints is 15 for each subject; therefore,
there are 30 joints in each frame.

UT-Kinect Dataset (UT): It has 200 video sequences belong-
ing to ten classes of activities and each of them is performed
by ten subjects two times [9]. To evaluate SHARL on this
dataset, Leave-one-out cross-validation protocol is used. There
is no interactive activity in this data, i.e., all samples have one
subject. Each subject is represented by 20 joints.

B. Implementation Details

A 3-layer BiLSTM is employed as the agent’s network
(policy network), Adam is the used optimizer with an ini-
tial learning rate 5e-3 and the dropout rate is set to 0.5.
Hyperparameters K, �, α, and β are, respectively, set to 4,
10, 0.01, and 0.009. We set hyperparameter N to half of the
number of all the available joints. More specifically, N is set to
�J/2	 where �.	 denotes the ceiling function. The buffer size
s is set to 25. The number of epochs can be selected adap-
tively based on the value of the loss function defined in (9).
However, for simplicity, it is set to 25 in our experiments on
all datasets. The proposed method is implemented in python
using the deep-learning framework Pytorch.

C. Boosting Baseline

The proposed spatial-attention-aware agent improves the
performance of the employed baseline recognition model. To
demonstrate this, we build and train SHARL using four differ-
ent baseline models and compare the recognition performance

TABLE I
ACCURACY RESULTS (IN PERCENT) OF FOUR DIFFERENT

BASELINE MODELS WITH AND WITHOUT SHARL

with and without the joint selection performed by the agent.
The employed baselines include both simple models, i.e.,
CNN-based and BiLSTM-based, and complex ones, i.e.,
graph-based networks DCGCN and DGNN.

BiLSTM, which is an extension of a simple LSTM, is
mainly used for classification of sequential data, and includes
one forward and one backward LSTM to provide more con-
tent for the network and make the training procedure faster
and more effective. LSTM has memory cell, and input and
forget gates. The input gate and forget gate control the flow
of information into the memory cell which mitigates the gra-
dient vanishing and exploding problem. See [4], [24] for
more details. CNNs are another class of deep learning meth-
ods that are mostly used for image and video data as they
can effectively find the spatial and temporal dependencies
through applying some filters. In such networks, there are
several convolution layers topped with FC layers at the end.
Due to using different filters, CNNs can find shift invariant
or space invariant representations for their input data. More
details can be found in [2] and [24]. GCNs are designed for
data with graph structure, and similar to CNNs, have some
shared filter parameters over the graph vertices. DGNN [60] is
specifically developed for skeleton-based activity recognition
using directed acyclic graphs which are proper for skele-
ton modeling. DGNN incorporates both spatial and motion
information in a two-stream structure. DCGCN is another
recent GCN-based model that employs a decoupling graph
convolution whereby different channels have different inde-
pendent trainable adjacent matrix. It also uses a drop-graph
module for regularization [65].

The CNN-based recognition model we used has two con-
volution layers followed by one FC layer, and is trained
using the Adam optimization method. The BiLSTM model
has three layers with hidden layer size 256, and the opti-
mizer is Adam. In our experiments, we use the DCGCN and
DGNN codes available on the respective author websites. For
a fair comparison, the default settings for each algorithm sug-
gested in the original papers are used. The hyperparameters
of our SHARL method are also set to their default values
presented in Section IV-B. Recognition performance of the
baseline models and the proposed SHARL method with dif-
ferent baselines, on the benchmark datasets explained above,
are shown in Table I. SHARL-X denotes the proposed SHARL
model with baseline model X. On each dataset, among X and
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Fig. 4. Visualizing frequency of selecting a joint by SHARL within a video, for three different activity classes from NTU, SBU, and UT datasets. The higher
the red color intensity, the higher is the selection frequency. (a) Three activities of NTU dataset. (b) Three activities of SBU dataset. (c) Three activities of
UT dataset.

TABLE II
ACCURACY RESULTS (IN PERCENT) OF DIFFERENT

METHODS ON NTU DATASET

SHARL-X, the best one is shown in bold. As can be seen,
the proposed spatial-attention-aware selection agent improves
the recognition accuracy of all the baseline models. The last
column shows recognition accuracy averaged over all datasets.
This column indicates that the proposed SHARL framework
significantly enhances the performance of the baseline models.

D. Comparison to State-of-the-Art

In this section, we adopt DGNN as the SHARL base-
line model. SHARL (with DGNN) is compared with several
state-of-the-art skeleton-based methods. Accuracy comparison
on the two subcategories of NTU dataset, i.e., CS and CV,
is shown in Table II. Among the eleven activity recognition
algorithms, the proposed SHARL method yields the best accu-
racy. A comparison on the SBU dataset is shown in Table III.

TABLE III
ACCURACY RESULTS (IN PERCENT) OF DIFFERENT

METHODS ON SBU DATASET

As can be seen, the proposed method outperforms all the
other state-of-the-art methods on this dataset. Performance
comparison with state-of-the-art on UT dataset is presented
in Table IV. Among the eleven algorithms, SHARL provides
the best performance.

E. Visualization of the Learned Hard Attention

The joints selected by the proposed spatial-attention-aware
agent, for three different activities from the three benchmark
datasets, are visualized in Fig. 4. The red circle color bright-
ness at each joint shows the selection frequency of that joint
across the whole video frames; e.g., in the “phone call” activity
of the NTU dataset, hand-related joints are correctly selected
in all frames and the redundant joints, e.g., in feet and head
are correctly removed. Fig. 5 demonstrates distribution of the
selected joints over all the activities for each data set. As can
be seen, the selected joints vary among different activities.
Also, depending on the activity, either the upper body or lower
body skeleton joints are mainly selected. These experiments
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TABLE IV
ACCURACY RESULTS (IN PERCENT) OF DIFFERENT

METHODS ON UT DATASET

Fig. 5. Distribution of the engaged joints in different actions for (a) SBU,
(b) UT, and (c) NTU(CS) dataset.

confirm that the learned hard attention (i.e., selected joints)
are consistent with what human perceives.

F. Convergence and Stability

As is discussed in Section III, the proposed agent is trained
by minimizing the loss function defined in (9). Based on [51],
policy gradients are guaranteed to converge to at least a local
optimum. To illustrate it in our experiments, the loss value ver-
sus training iteration, for datasets SUB, UT, and NTU (CS), are
shown in Fig. 6. These graphs show that, at the training outset,
the loss oscillates significantly. This can be associated with the
low skill level of the agent in finding hard attentions (i.e., rel-
evant joints per frame). As the training phase progresses, the
agent gains more and more skills in identifying and select-
ing relevant joints; hence, as is desired, the loss converges to
a very small value at the end of training. Moreover, in our
experiments, we observe that the SHARL performance does
not vary significantly in different executions of the algorithm,
which is a desired property that hints the algorithm is stable.

This property is quantified in Fig. 7, where the confidence
interval3 of loss during iterations for five different executions
of SHARL on one fold of SBU is shown, where BiLSTM is
used as baseline. As can be seen, the variance of output losses
is high at the beginning, but it turns to very small numbers
at the end of the training, the time that algorithm converges.
This implies the stability of SHARL.

G. Influence of Hyperparameters α and β

In this section, the effects of hyperparameters α and β

in (9) are investigated. Fig. 8(a) shows activity recognition
accuracy where α ∈ {0, 10−3, 10−2, 10−1, 1}, and β is set
to its default value, i.e., 9−3. Fig. 8(b) shows the recognition
accuracy where β ∈ {0, 9−4, 9−3, 9−2, 1} and α is set to its
default value 10−2. In both of these experiments, N is set to
its default value �J/2	. SHARL-BiLSTM and the UT dataset
are used for this experiment. The graphs confirm the effec-
tiveness of including these two additional constraints in the
optimization problem. α and β control the effect of the upper
bound and the lower bound we considered for the number of
selected joints in the loss function. Fig. 8(a) shows the best
range for α is around 10−2 and 10−1. By further increas-
ing α, the algorithm focuses more on minimizing the second
component of (9), i.e., selecting no more than N joints, and
pays less attention to other components, resulting in accuracy
degradation. Fig. 8(b) shows the best recognition performance
is achieved when β is in the range of 9−4 to 9−3. It can be
seen that SHARL achieves high performance for a wide range
of α and β, which is a desirable property.

H. Sensitivity to Hyperparameter N

In this section, we investigate the effect of changing N on
the performance of SHARL (with BiLSTM baseline). Fig. 9
shows the accuracy versus N for all the data sets, where N ∈
{3, 7, 10, 15, 19, 26, 30}, N ∈ {2, 5, 8, 10, 13, 17, 20}, and N ∈
{5, 10, 15, 25, 30, 40, 50}, respectively, for the SBU, UT, and
NTU datasets. Note J is 30, 20, and 50 in SBU, UT, and NTU
datasets. The role of N in (9) is imposing an upper limit on
the number of selected joints. Fig. 9 shows that by increasing
N to half of the number of joints, the SHARL performance
significantly improves. The method maintains high accuracy
for a wide range of N. This demonstrates that, as is desired,
the SHARL method is not too sensitive to the user-settable
parameter N and that the method inherently tends to select
only relevant joints. Accuracy is computed using fivefold and
leave-one-out cross-validation procedures for the SBU and UT
datasets, respectively.

I. Run Time Improvement

Similar to most machine learning algorithms, the SHARL
method is trained offline and the test phase, where joints are
selected, can be done in real time. Our experiments show
that, on average, the proposed SHARL framework eliminates

3Confidence interval denotes the mean of an estimation plus/minus its
variance.
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Fig. 6. SHARL-BiLSTM loss versus iterations for (a) SBU, (b) UT, and (c) NTU(CS) dataset.

Fig. 7. Confidence interval of loss during iterations for five different runs
of the SHARL method on one fold of SBU, and using BiLSTM as baseline.

Fig. 8. Accuracy of SHARL-BiLSTM versus (a) α and (b) β for UT dataset.

TABLE V
RUNTIME (IN HOURS) OF TRAINING A BILSTM-BASED RECOGNITION

MODEL WITH (Tpr+p) AND WITHOUT (To) SHARL

about 60% of joints. One may employ the trained spatial-
attention-aware agent as a preprocessing (filter) block before
(re-)training a recognition model. This may decrease the
(re-)training phase time since only relevant joints are involved.
This may be useful in online activity recognition applications
when a faster yet effective (re-)training phase is appreci-
ated. To demonstrate this property, a pretrained SHARL agent
(trained with BiLSTM baseline) is applied to the data and
relevant joints are identified and selected. The required time
for this preprocessing phase, for each dataset, is recorded
and shown by Tpr in Table V. The preprocessed videos, in

which the irrelevant joints are removed, are then used to
train a BiLSTM-based recognition model, where weights are
randomly initialized. The required time to train the BiLSTM-
based recognition model with preprocessed videos is recorded
and shown by Tp in the table. The total required time Tpr+p =
Tp + Tpr is reported in the third row of the table. The required
time to train the BiLSTM-based recognition model using the
original full-joint videos, with random initial weights, is also
recorded and shown by To. The same number of training
epochs are used when measuring Tp and To. The average
run times (avg.) for all the four datasets are shown in the
last column of the table. The run times reported in the table
are in hours. Comparing Tpr+p with To shows that employing
the pretrained SHARL agent as a preprocessing block speeds
up the training phase of the recognition model on average
by about 8%. In addition, we observed that training of the
recognition model converges faster, i.e., requires less num-
ber of training epochs, when using the preprocessed data as
input. One Tesla P100-PCIE-16-GB GPU is used to run these
experiments.

V. CONCLUSION AND DISCUSSION

In this article, we discovered a novel problem for activity
recognition, that is irrelevant joints should be identified and
discarded to improve recognition performance. We proposed a
novel spatial hard attention finding method, SHARL, employ-
ing deep RL without requiring extra labels. We formulated
the process of mining the key joints as an MDP and found the
optimal solution using REINFORCE. SHARL associates each
video frame with its own optimal joint set, which can vary
both in size and membership across the video. This allows to
incorporate in recognition the fact that the important key joints
may change as an activity proceeds. The proposed SHARL
framework is extensible—i.e., it can be applied to the existing
deep learning-based activity recognition models to improve
their performance. Performance of the proposed framework is
demonstrated on three widely used benchmark activity recog-
nition datasets NTU, SBU, and UT-kinect using four different
baseline models. Our method achieved a very competitive
performance of activity recognition compared to state-of-the-
art skeleton-based activity recognition methods. Experimental
results show that SHARL can increase the training speed of a
recognition model, when employed as a selection block before
the recognition model.
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Fig. 9. Accuracy of SHARL-BiLSTM versus N for (a) SBU, (b) UT, and (c) NTU(CS) datasets.

In general, selecting relevant joints of a human body in
activity recognition can be beneficial in several ways.

1) Improved Accuracy: By selecting only the relevant
joints, the model’s performance can be improved, as it
can focus on the most informative parts of the body.
This can lead to more accurate predictions of activities.

2) Reduced Computational Complexity: By selecting only
the relevant joints, the computational complexity of the
model can be reduced. This can lead to faster predictions
and reduced resource usage, making the model more
efficient.

3) Reduced Noise: By excluding irrelevant joints, the noise
in the data can be reduced, leading to a more reliable
and robust model.

4) Improved Interpretability: By focusing on only the rele-
vant joints, it becomes easier to understand which parts
of the body are most important for each activity, making
the model more interpretable.

5) Generalization: A model trained on a subset of the joints
may generalize better to new data, as it is more focused
on the most informative parts of the body.

Overall, selecting relevant joints for activity recognition can
lead to better performance, improved efficiency, and increased
interpretability.
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